Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Електромагнітні поля та електромагнітні випромінювання

Предмет: 
Тип роботи: 
Реферат
К-сть сторінок: 
12
Мова: 
Українська
Оцінка: 

викликають цю дію в меншій мірі. Енергія їхнього кванта достатня для порушення атома. Енергія хімічного зв'язку, що утримує атоми в молекулі будь-якої хімічної сполуки, що входить до складу організму, не перевищує 4 еВ. Фотони з енергією 12-15 еВ здатні викликати іонізацію води, атомів водню, азоту, вуглецю. Виходячи з того, що вода і перераховані атоми складають основу живої тканини, випромінювання з енергією 12 еВ можна розглядати як нижню межу для високоорганізованих біологічних систем. Особливістю УФВ є їх висока сорбційність – їх поглинає більшість тіл.

Спектр УФВ має велику довжину і викликає різні дії. Він розбитий на наступні області: УФА (390-315 нм, ГДР10 Вт/м2), УФВ (315-280 нм, ГДР10-2 Вт/м2), УФС (280-6 нм, ГДР10-3 Вт/м2). Температурні випромінювачі починають створювати УФВ при температурі 19000 С.
УФВ виникає при роботі радіоламп, ртутних випрямлячів, експлуатації ОКГ, при обслуговуванні ртутно-кварцових ламп, при зварювальних роботах.
Інтенсивність УФВ і його спектральний склад на робочому місці залежить від температури нагрівача, наявності газів (озону), пилу і відстані від робочого місця до джерела випромінювання. Пил, газ, дим поглинають УФВ і змінюють його спектральну характеристику. Повітря практично не прозоре для < 185 нм через поглинання УФВ киснем. У зв'язку з тим, що УФВ розсіюються і поглинаються в запиленому середовищі й у газах, розрахувати рівні УФ випромінювання на визначеній відстані від джерела складно і їх тільки вимірюють.
УФ радіація викликає зміну складу виробничої атмосфери. Утворюються озон, оксиди азоту, перекис водню, відбувається іонізація повітря. Хімічна й іонізуюча дія УФВ обумовлює утворення в атмосфері ядер конденсації, на яких розсіюється світло й освітленість робочих місць знижується, утворяться тумани.
 
4. Лазерне випромінювання
 
В даний час лазерна техніка знаходить дуже широке застосування. Зараз нараховується більше 200 галузей застосування ОКГ. Вони використовуються в дальнометрії, системах передачі інформації, телебаченні, спектроскопії, в електронній та обчислювальній техніці, при забезпеченні термоядерних процесів, біології, медицині, у металообробці, металургії, при обробці твердих і надтвердих матеріалів, при зварювальних роботах і ін. Мала кутова розбіжність ЛВ дозволяє здійснити його фокусування на площах малих розмірів (порівняних з довжиною хвилі) і одержувати щільність потужності світлового потоку, достатнью для інтенсивного розігрівання і випаровування матеріалів (щільність потужності випромінювання досягає 1011-1014 Вт/см2). Висока локальність нагрівання і відсутність механічних дій дозволяє використовувати лазери при збиранні мікросхем (зварювання металевих виводів і напівпровідникових матеріалів). За допомогою лазерного променю здійснюють проплав багатошарових матеріалів. Використовують ОКГ для приєднання резисторів, конденсаторів, виготовлення друкованих схем. Широко використовують ОКГ для одержання мікроотворів у надтвердих матеріалах.
Розширене застосування лазерних установок у різних галузях діяльності людини сприяє залученню великої кількості працівників для їх обслуговування. Поряд з унікальними властивостями (спрямованість і величезна щільність енергії в промені) і перевагами перед іншим устаткуванням лазерні установки створюють певну небезпеку для здоров'я обслуговуючого персоналу.
Принцип дії лазерного випромінювання заснований на використанні змушеного (стимульованого) електромагнітного випромінювання, одержуваного від робочої речовини в результаті порушення його атомів електромагнітною енергією зовнішнього джерела. Стимульоване випромінювання має такі якості:
1 – когерентність (сталість різниці фаз між коливаннями і монохроматичність – практично ширина смуги випромінювання 2 Гц) ;
2 – мала розбіжність променя (22» – теоретична, 2' – практична) ;
3 – висока щільність потужності (1014 Вт/см2).
У залежності від характеру робочої речовини розрізняють ОКГ: твірдотільні (робоча речовина – рубін, стекло з неодимом, пластмаси) ; напівпровідникові (Zn0, CaSe, Te, Pb і ін.) ; рідинні (з рідко земельними активаторами, органічними барвниками) ; газові (He-Ne, Ar, Xe, CO2 і ін.).
По режиму роботи лазери підрозділяються на безупинної дії й імпульсні. Зараз отримане лазерне випромінювання в діапазоні від 0. 6 мм (субміліметрові) до 1 мкм, що входить в УФ область (ІЧ, видимий, УФ). Уже з'явилися повідомлення про створення лазерів у діапазоні рентгенівського (6 нм – 0. 01 нм) і ведуться роботи зі створення лазерів в області гамма-випромінювання (0. 01 – 0. 0005 нм). Лазерне випромінювання в цих діапазонах крім монохроматичності, когерентності, гострої спрямованості і високої щільності потужності буде мати і високу проникаючу здатність. Як ми вже говорили, лазерне випромінювання може бути сконцентрованим у вузько спрямованому промені з великою щільністю потужності. Щільність потужності в промені лазера досягає великих величин внаслідок додавання енергії безлічі когерентних променів окремих атомів, що приходять в обрану точку простору в однаковій фазі.
Щільність потужності лазерного випромінювання на малій площині об'єкта визначається формулою:
Наприклад: Р=1 МВт, =0. 69 мкм, D/f=1. 2, тоді Ps=31014 Вт/см2. Для порівняння щільність потужності випромінювання на поверхні Сонця 108 Вт/см2.
Лазерне випромінювання з високою щільністю потужності супроводжується високою напруженістю електричного полю:
Значення електричної напруженості у вакуумі при Р=1 МВт складає 2. 74106 В/м.
Випромінювання лазера з величезною щільністю потужності руйнує і випаровує матеріали. Одночасно в області падіння лазерного випромінювання на поверхню матеріалу в ньому створюється світловий тиск сотні тисяч мегапаскалей (мільйони атмосфер)  (лазерний промінь – потік фотонів, кожний з який має енергію й імпульс сили) до 106 МПа. При цьому виникає температура до декількох мільйонів градусів К. При фокусуванні лазерного променя в газі відбувається утворення високотемпературної плазми, що є джерелом легкого рентгенівського випромінювання (1 нм).
При проходженні променю через неоднорідне середовище (повітря, деяке середовище) відбувається розбіжність і блукання тобто відбивання променя. Відрізняють дзеркальне і дифузне відбивання лазерного променя.
При оцінці дифузійного відображення випромінювання слід враховувати геометричні розміри поверхні, що відбиває, (крапковий чи протяжний).
 
Література
 
1. Васильчук М. В., Винокурові Л. Е., Тесленко М. Я. Основи охорони праці: Підручник. – К. : Просвіта, 1997.
2. Геврик Є. А. Охорона праці: Навч. посіб. – К., 2003. – 280 с.
3. Державні санітарні норми і правила захисту населення від впливу електромагнітних випромінювань. – К., 1996. – 27 с.
4. Долин П. А. Справочник по техникебезопасности.
Фото Капча