Предмет:
Тип роботи:
Контрольна робота
К-сть сторінок:
16
Мова:
Русский
штока, м2.
Рис. 5. Схема поршневого насоса с дифференциальным поршнем
Дифференциальный насос. В дифференциальном насосе (рис. 7.5) поршень 4 перемещается в гладко обработанном цилиндре 5. Уплотнением поршня служит сальник 3 (вариант I ) или малый зазор (вариант II ) со стенкой цилиндра. Насос имеет два клапана: всасывающий 7 и нагнетательный 6, а также вспомогательную камеру 1. Всасывание происходит за один ход поршня, а нагнетание за оба хода. Так, при ходе поршня влево из вспомогательной камеры в нагнетательный трубопровод 2 вытесняется объем жидкости, равный (F - f )l; при ходе поршня вправо из основной камеры вытесняется объем жидкости, равный fl. Таким образом, за оба хода поршня в нагнетательный трубопровод будет подан объем жидкости, равный
(F - f)l + fl = Fl
т.е. столько же, сколько подается насосом простого действия. Разница лишь в том, что это количество жидкости подается за оба хода поршня, следовательно, и подача происходит более равномерно.
3. Индикаторная диаграмма поршневых насосов
Рабочий цикл поршневого насоса может быть графически описан на бумаге специальным прибором - индикатором. График изменения давления в цилиндре за один полный оборот кривошипа называется индикаторной диаграммой . На рис. 7.6 показана такая диаграмма насоса простого действия.
Рис. 6. Индикаторная диаграмма
При движении поршня слева направо (см. рис. 3) (процесс всасывания) давление в цилиндре насоса резко падает до давления всасывания Pвс по линии аб. Из-за податливости стенок цилиндра и сжимаемости жидкости линия аб не вертикальна, а слегка наклонена и переходит затем в волнистую линию бв. Далее на всасывающей линии поддерживается постоянное давление и линия вг остается практически горизонтальной на протяжении всего хода всасывания. При обратном движении поршня (ход нагнетания) давление в цилиндре от Pвс поднимается до давления Pнагн по прямой гд, наклон которой влево от вертикали объясняется теми же самыми причинами, что и для линии аб. Начало сжатия жидкости сопровождается колебаниями давления в цилиндре (линия де). В дальнейшем давление Pнагн остается неизменным на протяжении всего хода нагнетания (линия еа). При повторном рабочем цикле этот график будет повторяться.
Неисправности, возникающие в гидравлической части поршневого насоса изменяют характер индикаторной диаграммы. Анализируя различные индикаторные диаграммы с теми или иными аномалиями, можно безошибочно сказать о неисправности насоса.
4. Баланс энергии в насосах
Баланс мощности в насосе наглядно можно представить в виде схемы, представленной на рис 7.
Рис. 7. Баланс мощности насоса
Мощность, которая подводится к валу насоса называется подведенной. Она равна произведению крутящего момента на валу на его угловую скорость
NП = MКРω
Мощность, которую мы получаем от насоса в виде потока жидкости под давлением называется полезной мощностью насоса (в дальнейшем просто мощностью)
NП = QHPH
Отношение мощности насоса к подведенной мощности называется общим КПД насоса
а разность NП - NH = Nпот называется потерями мощности в насосе. Потери мощности в насосе делятся на объемные, механические и гидравлические.
Потери мощности на внутренние утечки и неполное заполнение камер насоса
Nоб = (Qут + Qнеп)PH
Объемный КПД насоса определится из соотношения
Для современных насосов объемный КПД находится в пределах 0,92…0,96. Значения КПД приведены в технических характеристиках насосов.
Механические КПД характеризует потери на терние в подвижных соединениях между деталями насоса. При относительном перемещении соприкасающихся поверхностей в зоне их контакта всегда возникает сила трения, которая направлена в сторону, противоположную движению. Эта сила расходуется на деформацию поверхностного слоя, пластическое оттеснение и на преодоление межмолекулярных связей соприкасающихся поверхностей.
Мощность, затраченная на преодоление сил трения, определяется
Nтр = Mтрω,
где Мтр - момент трения в насосе;
ω - угловая скорость вала насоса.
Механический КПД определяется из соотношения
Для современных насосов механический КПД также находится в пределах 0,92…0,96.
Гидравлический КПД характеризует потери на деформацию потока рабочей жидкости в напорной камере и на трение жидкости о стенки сосуда. Эти потери примерно на порядок ниже механических потерь на трение и часто в инженерных расчетах не учитываются или объединяются с механическими потерями на трение. В этом случае объединенный КПД называется гидромеханическим.
Мощность, затраченная на гидравлические потери, определится
Nг = QH ( PK - PH ),
где PК - давление в напорной камере насоса;
PН - давление в напорной гидролинии на выходе из насоса.
Гидравлический КПД определяется из соотношения
Общий КПД насоса равен произведению КПД объемного, гидравлического и механического
η = ηоб + ηмех + ηг
Таким образом, баланс мощности насоса дает представление о потерях, возникающих в насосе, общем КПД и всех его составляющих.
5. Обозначение элементов гидро- и пневмосистем
Кроме насосов и гидромоторов существуют и другие разнообразные по конструкции и назначению гидроэлементы. Одни управляют потоком рабочей жидкости, другие служат для обеспечения безотказной работы гидросистем и т.д. Совокупность этих устройств называется гидроприводом и требует отдельного изучения. Все гидроэлементы имеют свое условное обозначение, из которых составляются гидросхемы по аналогии с электрическими схемами.
Ниже приводятся условные обозначения основных гидроэлементов.
Таблица 1
Условные обозначения основных гидроэлементов
На рис. 8 изображен составленный из условных обозначений пример гидравлической схемы привода поворота стрелы челюстного погрузчика.
Схема состоит из бака, нерегулируемого гидромотора, трехпозиционного гидрораспределителя, двух регулируемых дросселей с параллельно подключенными к ним обратными клапанами, двух гидроцилиндров, фильтра и предохранительного клапана.
Рис. 8. Гидросхема привода поворота стрелы
Принцип работы гидропривода заключается в следующем. Из бака рабочая жидкость (масло) забирается насосом и подается к гидрораспределителю. В нейтральном положении золотника гидрораспределителя при работающем насосе на участке трубопровода между насосом и распределителем начинает увеличиваться давление, при этом срабатывает предохранительный клапан и жидкость сливается обратно в бак. При смене позиции золотника (нижняя позиция на схеме) открываются проходные сечения в гидрораспределителе, и жидкость начинает поступать в полости нагнетания гидродвигателей (поршневые полости гидроцилиндров). Из штоковой полости гидроцилиндров масло по гидролинии слива проходит через регулируемые дроссели, гидрораспределитель и, очищаясь фильтром, попадает на слив в бак.
Скорость поступательного движения штоков гидроцилиндров регулируется дросселями. Реверсирование движения штоков осуществляется путем переключения позиций гидрораспределителя. При обратном движении штоков без нагрузки их скорость не регулируется и зависит от расхода рабочей жидкости в штоковые полости. При аварийной остановке штоков (например, непреодолимое усилие) давление в системе возрастает, вызывая тем самым открытие предохранительного клапана и сброс рабочей жидкости в бак.