Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (066) 185-39-18
Вконтакте Студентська консультація
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Класифікація, суть і застосування методів кількісного аналізу

Предмет: 
Тип роботи: 
Реферат
К-сть сторінок: 
9
Мова: 
Українська
Оцінка: 
Зміст
 
1. Інструментальні методи аналізу
2. Оптичні методи аналізу
3. Спектрофотометричний метод аналізу
4. Методика визначення спектрофотометрії
5. Лазерний атомно- фотоіонізаційний спектральний аналіз
Використана література
 
1. Інструментальні методи аналізу
 
Інструментальні або фізико-хімічні методи аналізу засновані на вимірюванні за допомогою приладів певних фізичних властивостей системи, які є функцією кількості компоненту, який визначають, в пробі, що аналізують.
Інструментальні методи аналізу мають ряд переваг у порівнянні з класичними методами: значно вищу чутливість, селективність, експресність, об’єктивність, можливість автоматизації і комп’ютеризацій процесу аналізу.
Інструментальні методи аналізу можна поділити на декілька груп:
- оптичні методи;
- електрохімічні методи;
- хроматографічні методи
 
2. Оптичні методи аналізу
 
До оптичного діапазону відносяться електромагнітні хвилі з довжиною від 100 до 10000 нм. Його розділяють на три області:
- ультрафіолетову (УФ) 100-380 нм;
- видиму 380-760 нм;
- інфрачервону (ІЧ) 760- 10000 нм.
В залежності від характеру взаємодії речовини з електромагнітним випромінюванням оптичні методи розділяють на:
- абсорбційні (засновані на вимірюванні поглинання речовиною світлового випромінювання). До них відносять колориметрію, фотоколориметрію, спектрофотометрію, атомно-адсорбційні методи;
- емісійні (засновані на вимірюванні інтенсивності світла, випромінюваного речовиною). До них відносяться флюориметрія, емісійний спектральний аналіз та полум’яна фотометрія.
Методи, пов’язані із взаємодією світлового випромінювання з суспензіями, поділяють на:
- турбідиметрію (заснована на вимірюванні інтенсивності світла, яке поглинається незабарвленою суспензією) ;
- нефелометрію (заснована на вимірюванні інтенсивності світла, яке відбивається або розсіюється забарвленою або незабарвленою суспензією).
Методи, засновані на явищі поляризації молекул під дією світлового випромінювання ділять на:
- рефрактометрію (заснована на вимірюванні показника заломлення) ;
- поляриметрію (заснована на вимірюванні кута обертання плоскості поляризації поляризованого променя світла, що пройшов через оптично активне середовище) ;
- інтерферометрію (заснована на вимірюванні зсуву інтерференції світлових променів при проходженні їх крізь кювети з розчином речовини, розчинником та крізь коліматор).
Оптичні методи аналізу нерозривно пов’язані з використанням сучасних приладів різної складності, що породжує вартість аналізу, але дає ряд переваг у порівнянні з класичними хімічними методами: експресність, нерушійність зразків, простоту методики, використання невеликої кількості речовини для аналізу, можливість аналізувати сполуки будь-якої природи проведення експрес аналізу багато компонентних сумішей. Крім того вони підвищують чутливість. Точність і відтворюваність результатів кількісних визначень.
 
3. Спектрофотометричний метод аналізу
 
Однією із задач спектрофотометричного метода є кількісне визначення величин, які характеризують поглинання даною речовиною монохроматичного випромінювання різних довжин хвиль. Ці величини можуть бути використані як для якісної характеристики речовини, так і для кількісного визначення в розчині чи в суміші з іншими речовинами. В зв’язку з поділом електромагнітного спектра по довжині хвилі на певні області можна говорити про спектрофотометрію в інфрачервоній, видимій і ультрафіолетовій області. В ультрафіолетовій і видимій області проявляються електронні спектри молекул, в інфрачервоній області – коливальні спектри.
В сучасних хімічних дослідженнях широко застосовують спектральні методи. Ці методи все більше застосовують в технічному аналізі хіміко-фармацевтичних препаратів, в аптечній практиці. Серед оптичних методів найбільш доступною, а тому і самою поширеною є видима і ультрафіолетова (УФ) спектрофотометрія, яка дозволяє на відносно нескладному обладнанні швидко і точно проводити кількісний аналіз речовин.
Спектрофотометрія у видимій області і УФ-областях дозволяє оцінювати ступінь чистоти речовини, ідентифікувати по спектру різні сполуки, визначити константи дисоціації кислот і основ, досліджувати процеси комплексоноутворення.
Інфрачервоні (ІЧ) спектри дають характеристику речовин. Наявність в ІЧ-спектрах тих чи інших полос поглинання дозволяє розшифровувати структуру речовини.
УФ-спектрофотометричне вимірювання проводять в розчинах. Як розчинники використовують очищену воду, кислоти, луги, спирти (метанол, етанол), деякі інші органічні розчинники. Розчинник не повинен поглинатися в тій чи іншій області спектра, що й аналізуюча речовина. Характер спектра (структура і положення полос поглинання) може змінюватися в різних розчинниках, а також при зміні рН середовища.
Методом УФ-спектрофотометрії використовують для визначення ідентичності, чистоти і кількісного вмісту лікарських препаратів.
Вивчення спектрів поглинання хімічних речовин з різною структурою дало можливість установити, що основними факторами, які обумовлюють поглинання світла, є наявність так званих хромофорів, ненасиченість (подвійні чи потрійні зв’язки), наявність карбонільної, карбоксильної, амідної, азо-, нітрозо-, нітро- та інших функціональних груп. Кожна функціональна група характеризується поглинанням в певній області спектра. Але є ряд факторів (присутність декількох хромофорних груп, вплив розчинника та ін.) приводять до зміщення смуг поглинання в сторону більших довжин хвиль (багатохромне зміщення) або в сторону коротких довжин хвиль (гіпсохромне зміщення). Крім зміщення може спостерігатися ефект збільшення (гіперхромний) чи зменшення (гіпохромний) інтенсивності поглинання.
В зв’язку з цим для ідентифікації речовин по її УФ-спектру застосовують метод порівняння із спектром відомої речовини, одержаний в тих же умовах. Характеристикою спектра поглинання речовини є положення максимумів (мінімумів) поглинання, а також інтенсивність поглинання, що характеризується величиною густини чи питомого показника поглинання при даній довжині хвилі.
Інфрачервоні (коливальні) спектри використовуються для ідентифікації лікарських препаратів. ІЧ-спектри більшості органічних сполук на відміну від УФ-спектрів характеризуються наявністю великою кількістю ліків поглинання. Метод ІЧ-спектроскопії дає можливість одержати найбільш повну інформацію про будову і склад аналізуємої речовини, яка дозволяє ідентифікувати дуже близькі по структурі сполуки. Метод інфрачервоної спектроскопії прийнятий для ідентифікації органічних лікарських речовин з полі функціональними групами шляхом порівняння із спектрами стандартних зразків, які зняті в однакових умовах.
У зв’язку з підвищеними вимогами до якості лікарських речовин ІЧ-спектроскопія, як один із найбільш надійних методів ідентифікації, набуває все більшого значення. Спектрофотометричне визначення проводять спектрофотометром як забарвлених, так і безбарвних сполук по вибірковому поглинання світла у видимій, ультрафіолетовій чи інфрачервоній областях спектра.
Спектрофотометричний метод аналізу ґрунтується на загальному принципі – пропорціональній залежності між світло поглинанням речовини, її концентрації і товщини поглинаючого шару. Для визначення концентрації розчинів спектрофотометричним методом використовують закон Бугра-Ламберта-Беєра:
 
 ,
 
де С – концентрація досліджуваної речовини у відсотках;
в – товщина шара речовини в сантиметрах;
х – показник поглинання розчину, концентрація якого дорівнює одиниці;
Д – оптична густина.
Визначення оптичної густини проводять на фотоелектричних спектрофотометрах.
Показник поглинання х визначають на основі визначення оптичної густини Д для розчинів з відомою концентрацією по формулі:
 
При цьому, якщо концентрація С виражена в молях на 1 л, то величина х називається молярним показником поглинення а позначається символом  ; якщо концентрація виражена в грамах на 100 мл розчину, то ця величина називається питомим показником поглинання і позначається символом  .
Таким чином, молярний показник поглинання   представляє собою оптичну густину одномолярного розчину речовини при товщині шару 2см; питомий показник поглинання   – оптичну густину розчину, що містить 1г речовини в 100 мл розчину при тій же товщині шару.
 
4. Методика визначення спектрофотометрії
 
Включення приладу у сітку проводиться згідно інструкцію.
Після включення освітлювача (Л) лампи накалювання чи водневої лампи, які встановлюються переключателем, який знаходиться на задній частині кожуха, і підсилювача в електричну сітку слід:
- встановити в кюветодержачі кювети з контрольним і досліджуваним розчином, помістити кюветодержач в кюветний відділ таким чином, щоб на шляху потоку випромінювання знаходився контрольний розчин (кюветодержач повинен бути повернутий білою точкою до працюючого), закріпити його пружинячи зажимом, закрити кришку кюветного відділу;
- поворотом рукоятки шкали довжини хвиль встановити на шкалі значення необхідної довжини хвилі;
- рукояткою встановити в робоче положення фотоелемент;
- поставити переключатель в положення „викл. ” та закрити фотоелемент, поставити шторку в положення „закр. ”;
- рукоятку держача світофільтрів установити на вказівник відповідного світофільтра;
- поставити рукоятку в одне із положень – 1, 2, 3 чи 4. Потрібно мати на увазі, що якщо потрібно вимірювати з великою чутливістю і можна знехтувати зниженням монохроматичності і працювати з широкою цілиною, то необхідно поставити рукоятку в положення 1; якщо, навпаки, необхідно працювати з вузькою щілиною, то проводяться вимірювання при положенні 4.
- скомпенсувати темновий потік рукояткою грубо і плавно регулювання, підводячи стрілку міліамперметра до нуля;
- відкрити фотоелемент, поставити рукоятку в положення „відкр. ”;
- змінюючи ширину щілини обертання рукоятки, установити стрілку міліамперметра на нульове значення, більш плавно це може бути зроблено поворотом рукоятки потенціометра чутливості;
- установити на шляху випромінювання досліджуваний зразок, переміщаючи каретку з кюветодержачем рукояткою;
Поставити переключатель в положення і поворотом рукоятки відлікового потенціометра, відновити нульове положення стрілки міліамперметра. По шкалі цього потенціометра зняти відлік оптичної густини (верхня шкала) або проценту пропускання (нижня шкала). Відлік потрібно зробити 3-4 рази; за значення береться середній результат.
 
5. Лазерний атомно- фотоіонізаційний спектральний аналіз
 
На сьогодні актуальною для фармації є розробка нових аналітичних методів визначення ультранизьких вмістів елементів в різних речовинах. Це зумовлено тим, що сьогодні для вирішення великої кількості задач фармації, технології високочистих матеріалів, геології та геохімії, токсикології, екології та ін. потрібний контроль вмісту деяких елементів в речовині на рівні 10-8 – 10-11%. В деяких випадках таку чутливість аналіза можуть забезпечити традиційні аналітичні методи або їх модифікації: атомно- абсорбційна і атомно- флуорисцентна спектрометрія, нейтронно- активаційний аналіз, іскрова масс- спектроскопія та інші. Проте в більшості випадків чутливість обмежена рівнем 10-7 %.
Очевидний інтерес для аналітичного застосування являють собою лазерні методи детектування одиничних атомів. Вони засновані на методі лазерного збудження флуоресценції атомів і методі лазерної ступінчатої резонансної фотоіонізації атомів. Проте для прямого використання цих методів в аналітичних задачах необхідно вирішити ряд супутніх проблем. Оскільки задача визначення ультра низьких слідів елементів в аналізованій речовині складається з трьох послідовних етапів:
1. Отримання вільних атомів елемента.
2. Транспортування цих атомів в область лазерного променя.
3. Детектування атомів з допомогою лазерного випромінювання.
 
Використана література:
 
1. Е. Т. Оганесян. «Посібник з хімії поступающим у вузи». Москва. 1992 р.
2. Л. С. Гузей, В. Н. Кузнєцов. «Новий довідник по хімії». Москва. 1998 р.
3. Б. Н. Степаненко. «Органічна хімія». Москва. 1980р.
Фото Капча