Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Комплекс самостійного опрацювання з дисципліни «Будівельні матеріали»

Предмет: 
Тип роботи: 
Курс лекцій
К-сть сторінок: 
94
Мова: 
Українська
Оцінка: 

заморожуванню при температурі – (18+- 2) оС і відтаванню у воді з температурою (18+- 2) оС до певного числа циклів, встановленого нормативними документами, або до початку руйнування зразка.

Марка за морозостійкістю F – це число циклів навперемінного заморожування та відтавання цілих виробів або зразків з матеріалів у насиченому водою стані при збереженні ними початкових фізичних та фізико-механічних властивостей у нормованих межах. Цикл випробування, умови якого регламентуються відповідними стандартами, складається з одного заморожування та відтавання зразків протягом визначеного часу.
Залежно від призначення до матеріалів висуваються різні вимоги щодо морозостійкості. Так, рядова цегла повинна мати марку не менше F 15.
Теплопровідність – це здатність матеріалу передавати теплоту від однієї поверхні до іншої за наявності різниці температур на цих поверхнях. Така здатність характеризується коефіцієнтом теплопровідності.
Коефіцієнт теплопровідності λ -кількість тепла, що проходить крізь зразок матеріалу завтовшки 1 м, площею 1 м2 за 1 секунду при різниці температур на протилежних сторонах зразка в 1 градус.
Вогнева усадка – здатність матеріалів змінювати свої розміри та об’єм внаслідок спікання чи оплавлення частинок під дією високих температур.
Вогнестійкість – це здатність матеріалу витримувати дію високих температур або вогню й води (під час пожеж), не руйнуючись. За ступенем вогнестійкості будівельні матеріали поділяють на три групи: негорючі, важкогорючі й горючі.
Негорючі – це матеріали, які під дією вогню чи високих температур не горять, не тліють і не обвуглюються. Негорючі матеріали поділяють на вогнестійкі, що практично не деформуються (цегла, черепиця, жаростійкий бетон, сієніт), вогнетривкі й термічно стійкі.
Важкогорючі – це матеріали, які під дією вогню чи високих температур злегка займаються, тліють або обвуглюються, а коли віддаляється джерело вогню, ці процеси припиняються. До таких матеріалів належать здебільшого мінералоорганічні матеріали (асфальтобетон, гідроізол).
Горючі – це матеріали, які під дією вогню чи високих температур займаються або тліють, ці явища тривають і тоді, коли усунуто джерело вогню. До цієї групи належать деревина, бітуми, полімерні матеріали.
Вогнетривкість – це властивість матеріалу протистояти, не розплавляючись, впливу високих температур. Вона характеризується температурою, під впливом якої зразок випробуваного матеріалу у вигляді зрізаної тригранної піраміди (піроскопа) розм’якшується і деформується так, що його вершина дотикається підставки.
Жаростійкість – це здатність матеріалу за умов тривалої дії температур в заданому інтервалі зберігати або незначно змінювати свої фізичні або механічні властивості.
Радіоактивність будівельних матеріалів обумовлена природними довго існуючими радіонуклідами, переважно радієм-226, торієм-232 та калієм-40.
Радіаційна стійкість – властивість матеріалу протистояти дії радіоактивного випромінювання, яке змінює його структуру і властивості. Споруди атомної енергетики, деякі науково-дослідні, лікувально-профілактичні установи необхідно захищати від радіоактивного випромінювання, в першу чергу від потоку нейтронів та γ-променів, небезпечних для живих істот. Для захисту від нейтронного випромінювання застосовують матеріали, що містять велику кількість хімічно зв’язаної води (бетони), а від γ-випромінювання – матеріали з великою середньою густиною (особливо важкі бетони, свинець, барит).
 
1. 2. Механічні властивості
 
Механічні властивості вказують на здатність матеріалу чинити опір руйнуванню або деформаціям (зміна форми і розмірів) під дією зовнішніх навантажень.
Такими властивостями є твердість, міцність, пружність, розтяжність, пластичність, крихкість. Будівельні матеріали в спорудах зазнають дії різних зовнішніх сил та інших факторів, які можуть призвести до появи тріщин, зміни початкової форми без зміни структури, зниження міцності та інших явищ, пов’язаних із фізико-механічними властивостями.
Міцність – це здатність матеріалу чинити опір руйнуванню від внутрішніх напружень, що виникають під дією різних зовнішніх навантажень. У процесі експлуатації будівель і споруд будівельні матеріали найчастіше зазнають напружень стиску, згину, розтягу, зрізу та удару.
Будівельні матеріалу неоднаково сприймають різні навантаження. Це залежить від хімічного та мінералогічного складів матеріалу, структури й будови. Так, природні кам’яні матеріали, цегла і бетон добре працюють на стиск, але погано на розтяг і згин. На розтяг вони витримують навантаження в 10…15 разів менші, ніж на стиск.
Міцність будівельних матеріалів характеризується межею міцності при стиску, згині тощо. Вона чисельно дорівнює напруженню в матеріалі, яке відповідає навантаженню, що призвело до руйнування зразка і вимірюється в МПа.
Зразки будівельних матеріалів випробовують на спеціальних пресах до руйнування, а межу міцності при стиску, МПа, обчислюють за формулою
Rст = P / F,
де P – руйнівне навантаження (сила), МН; F – площа поперечного перерізу зразка до випробування, м2.
Крім традиційних руйнівних методів, для визначення міцності будівельних матеріалів можна застосовувати також неруйнівні методи, наприклад, ультразвуковий.
Водостійкість – це здатність матеріалу зберігати фізико-механічні властивості у насиченому водою стані, характеризується коефіцієнтом розм’якшення Кр. Цей показник визначається відношенням міцності насиченого водою матеріалу до його міцності в сухому стані.
Межу міцності при згині визначають на зразках – балочках квадратного чи прямокутного перерізу, розміри яких встановлені відповідними стандартами, а також на натурних зразках (цегла, черепиця, азбестоцементні листи).
Випробування на згин виконують за схемою балки, встановленої на двох опорах при зосередженому навантаженні, прикладеному симетрично відносно осі балки, до її руйнування. Межа міцності на згині, МПа, якщо навантаження зосереджене й прикладене в центрі,
R = 3P / 2bh2.
Якщо два навантаження прикладені
Фото Капча