Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Трансформатор та його різновиди

Предмет: 
Тип роботи: 
Повідомлення до семінарського заняття
К-сть сторінок: 
12
Мова: 
Українська
Оцінка: 

підключено, трансформатори повинні задовольняти умовам економної роботи. Конструювання трансформаторів із малими втратами вимагає великого осердя, високоякісної електротехнічної сталі, товстіших провідників, що збільшує початкові затрати, але окупається при експлуатації[15].

Режими роботи трансформатора
Режим холостого ходу
Трансформатор може працювати в режимі холостого ходу, коли вторинне коло розімкнене (навантаження відсутнє), тобто  . За допомогою дослідження холостого ходу можна визначити ККД трансформатора, коефіцієнт трансформації, а також втрати в осерді.
У режимі холостого ходу для трансформатора з сердечником з магнітом'якого матеріалу струм холостого ходу характеризує величину втрат в осерді (на вихрові струми і на гістерезис) та реактивну потужність перемагнічування магнітопроводу. Потужність втрат можна обчислити, помноживши активну складову струму холостого ходу на напругу, що подається на трансформатор.
Для трансформатора без феромагнітного осердя втрати на перемагнічування відсутні, і струм холостого ходу визначається опором індуктивності первинної обмотки, який пропорційний до частоти змінного струму та величини індуктивності.
Режим короткого замикання[ред.  • ред. код]
Режим короткого замикання можна отримати в результаті замикання вторинної обмотки на коротко. Це аварійний режим, що може призвести до виходу з ладу трансформатора. При цьому струм у вторинній обмотці може бути у 20…30 разів більшим за номінальний. Тому слід відрізняти режим короткого замикання від досліду короткого замикання. За допомогою останнього можна визначити втрати корисної потужності на нагрівання проводів в колі трансформатора.
При дослідженні режиму короткого замикання, на первинну обмотку трансформатора подається змінна напруга невеликої величини, виводи вторинної обмотки закорочують. Величину напруги на вході встановлюють такою, щоб струм короткого замикання дорівнював номінальному (розрахунковому) струму трансформатора. У таких умовах величина напруги короткого замикання характеризує втрати в обмотках трансформатора, втрати на омічний опір. Потужність втрат можна обчислити помноживши напругу короткого замикання на струм короткого замикання.
Даний режим широко використовується у вимірювальних трансформаторах струму.
Режим навантаження
Режим роботи трансформатора при якому вторинна обмотка замкнута на опір називається режимом роботи трансформатора під навантаженням. При такому режимі роботи у вторинній обмотці буде протікати струм IS, який створить свій магнітний потік ΦS, який за правилом Ленца має зменшити зміни магнітного потоку в осерді. Це призводить до автоматичного збільшення сили струму в колі первинної обмотки. Збільшення сили струму в колі первинної обмотки відбувається згідно із законом збереження енергії:
Це означає, що підвищуючи за допомогою трансформатора напругу у кілька разів, ми в стільки ж разів зменшуємо силу струму (та навпаки). Отже, трансформатор перетворює змінний струм таким чином, що добуток сили струму на напругу приблизно однаковий у первинній і вторинній обмотках.
 
Різновиди
 
Силовий трансформатор
Докладніше: Силовий трансформатор
Силовий трансформатор – стаціонарний прилад з двома або більше обмотками, який за допомогою електромагнітної індукції перетворює систему змінної напруги та струму в іншу систему змінної напруги та струму, як правило, різних значень при тій же частоті з метою передачі електроенергії без зміни її потужності при передаванні[16][17].
Силовий трансформатор використовується для перетворення параметрів електричної енергії в електричних мережах і устаткуванні, що застосовуються для приймання та споживання електричної енергії[18]. Силовий трансформатор застосовується у складі комплектних трансформаторних підстанцій для пониження напруги при подачі електроенергії населеним пунктам.
Термін «силовий» вказує на роботу даного виду трансформаторів з великими потужностями. Необхідність застосування силових трансформаторів зумовлена різною величиною робочих напруг ліній електропередач (35…750 кВ), міських електромереж (як правило 6…10 кВ), напруги що подається кінцевим споживачам (0, 4 кВ, вони ж 380/220 В) та напруги, необхідної для роботи електромашин і електроприладів (у досить широкому діапазоні від одиниць вольт до сотень кіловольт).
Силові трансформатори поділяються на сухі, найчастіше використовуються в електромережах і в джерелах живлення різних приладів, і масляні, що працюють при напругах від 6кВ і вище. Масляні трансформатори відрізняються від сухих тим, що як ізоляційне та охолоджувальне середовище застосовується спеціальна трансформаторна олива. Силові масляні трансформатори переважно призначаються для пониження напруги електромереж.
Автотрансформатор
Умовне графічне позначення автотрансформатора з трьома виводами
Докладніше: Автотрансформатор
Автотрансформатор – трансформатор, дві або більше обмоток якого мають спільну частину[19]. Це є варіант виконання силового трансформатора, в якому первинна і вторинна обмотки сполучені безпосередньо, і мають за рахунок цього не тільки електромагнітний зв'язок, а й електричний. Обмотка автотрансформатора має декілька виводів (як мінімум 3), при підключенні до яких, можна отримувати різні напруги.
Перевагою автотрансформатора є вищий ККД, оскільки лише частина потужності піддається перетворенню – це особливо суттєво, коли вхідна і вихідна напруги відрізняються незначно. Недоліком є відсутність електричної ізоляції (гальванічної розв'язки) між первинним і вторинним колом. У промислових мережах, де наявність заземлення нульового проводу обов'язкова, цей чинник ролі не грає, зате суттєвою є менша витрата сталі для осердя, міді для обмоток, менша вага і габарити, і в результаті – менша вартість.
Застосування автотрансформаторів економічно виправдане замість звичайних трансформаторів для сполучення ефективно заземлених мереж з напругою 110 кВ і вище при коефіцієнтах трансформації не більших за 3…4.
Докладніше: Автотрансформатор
Вимірювальний трансформатор[ред.  • ред. код]
Використання трансформаторів струму у вимірювальному устаткуваннідля вимірювання струму у трифазних лініях живлення зі струмом до 400 А
Вимірювальний трансформатор – трансформатор, призначений для пересилання інформаційного сигналу вимірювальним приладам, лічильникам, пристроям захисту і (або) керування[20]. Вимірювальні трансформатори поділяються на трансформатори струму і трансформатори напруги.
Трансформатор струму – вимірювальний трансформатор, в якому за нормальних умов роботи вторинний струм практично пропорційний первинному і зсув фаз між ними близький до нуля[20].
Вимірювальний трансформатор струму – трансформатор, який призначений для перетворення струму до значення, зручного для виміру. Первинна обмотка трансформатора струму включається послідовно у ланцюг зі змінним струмом, що вимірюється. А у вторинну включаються вимірювальні прилади. Струм, що протікає по вторинній обмотці трансформатора струму, пропорційний струму, що протікає у його первинній обмотці.
Трансформатори струму широко використовуються для вимірювання електричного струму й у пристроях релейного захисту електроенергетичних систем, у зв'язку з чим на них накладаються високі вимоги по точності. Трансформатори струму забезпечують безпеку вимірювань, ізолюючи вимірювальні ланцюги від первинного ланцюга з високою напругою, яка часто складає сотні кіловольт.
Зазвичай, трансформатор струму виготовляється з двома і більше групами вторинних обмоток: одна використовується для підключення пристроїв захисту, інша, точніша – для підключення засобів обліку і вимірювання (наприклад, лічильників електроенергії).
Трансформатор напруги – вимірювальний трансформатор, у якому за нормальних умов використання вторинна напруга пропорційна первинній напрузі та за умови правильного вмикання зсунена відносно неї за фазою на кут, близький до нуля[20].
Трансформатор напруги використовується для перетворення високої напруги в низьку в колах релейного захисту та контрольно-вимірювальних приладів і автоматики. Застосування трансформатора напруги дозволяє ізолювати логічні кола захисту і кола вимірювання від кіл високої напруги.
Імпульсний трансформатор
Імпульсний трансформатор – трансформатор з феромагнітним осердям, для перетворення імпульсів електричного струму або напруги з тривалістю імпульсу до десятків мікросекунд з мінімальним спотворенням форми імпульсу. Імпульсні трансформатори в радіолокації, імпульсному радіозв'язку, автоматиці і обчислювальній техніці служать для узгодження джерела імпульсів з навантаженням, зміни полярності імпульсів, розділення електричних ланцюгів по постійному і змінному струму додавання сигналів, запалювання імпульсних ламп тощо.
Робота імпульсного трансформатора істотно відрізняється під час формування фронту і вершини імпульсу. Для кращої передачі фронту і спаду імпульсу необхідно, щоб міжвиткова ємність обмоток, паразитні ємності монтажу і індуктивність розсіяння імпульсного трансформатора були мінімальними. Зменшення міжвиткових ємностей досягається використанням сердечників малих розмірів, відповідним намотуванням і взаємним розташуванням обмоток, а також зменшенням числа витків (при цьому знижується коефіцієнт трансформації). В імпульсних трансформаторах застосовують сердечники з пермалою, кремнистої трансформаторної сталі, феритів та інших матеріалів з високою магнітною проникністю.
Резонансний трансформатор
Резонансний трансформатор – трансформатор, що працює на резонансній частоті коливального контура утвореного однією або декількома із його обмоток підключенням до електричного конденсатора. У резонансного трансформатора зазвичай вторинна обмотка виконує роль індуктивності у коливальному контурі, утвореному разом з конденсатором. Коли на первинну обмотку подати періодичний струм у вигляді прямокутних чи пилкоподібних імпульсів на резонансній частоті, кожен імпульс струму дає поштовх коливанням індукованого струму у вторинній котушці. У зв'язку з резонансом можуть досягатись великі значення напруги, поки вона не буде обмежена якимось процесом, таким як електричний пробій. Такі пристрої використовуються для створення високої змінної напруги, що не може бути досягнутою на таких електростатичних машинах, як електростатичний генератор Ван де Граафа чи електрофорна машина.
Фото Капча