justify;">ною в інтервалі температур Аr1 – MН для придушення розпаду аустеніту в області перлітного перетворення і уповільненою при охолодженні в інтервалі температур МН – МК (висока швидкість небажана бо приводить до різкого збільшення залишкових напружень і навіть до утворення тріщин).
Пошук
Матеріалознавство
Предмет:
Тип роботи:
Курс лекцій
К-сть сторінок:
91
Мова:
Українська
В залежності від швидкості охолодження при розпаді аустеніту можуть утворюватися також дисперсні ферито-цементитні структури – сорбіт, троостит.
Завершальною операцією гартування є відпущення, в результаті якого сталь отримує потрібні структуру і властивості. Крім того знешкоджуються внутрішні напруження, що виникають при гарті.
Відпущення полягає в нагріванні загартованої сталі до температур ниж-
чих АС1, тривалій витримці при заданій температурі і подальшому повільному охолодженні.
Температура та швидкість охолодження мають суттєвий вплив на формування остаточної структури. За цією ознакою розрізняють три види відпущення: низькотемпературне (низьке), середньо температурне (середнє) і високотемпературне (високе) (рис. 19).
Рисунок 19. – Види відпущення.
Низькотемпературне (низьке) відпущення проводять з нагріванням до
250 °С. При цьому знижується внутрішня напруга, мартенсит гарту переходить у відпущений мартенсит, підвищується міцність і небагато поліпшується в'язкість, без помітного зниження твердості. Застосовують для загартованих сталей (0,5—1,3 %С), які після низького відпущення зберігають твердість в межах HRC 58—63, а отже, високу зносостійкість. Проте такий виріб (якщо око не має в'язкої серцевини) не витримує значних динамічних навантажень.
Низькотемпературному відпущенню піддають ріжучий і вимірювальний інструмент з вуглецевих і низьколегованих сталей, а також деталі, що зазнали поверхневий гарт, цементацію, ціанування або нітроцементацію. Тривалість відпущення зазвичай 1—2,5 годин, а для виробів великих перетинів і вимірювальних інструментів призначають більш тривалішу витримку.
Средньотемпературне (середнє) відпущення виконують при 350—500 °С і застосовують головним чином для пружин і ресор, а також для штампів. Таке відпущення забезпечує високу межу пружності, межу витривалості і релаксаційну стійкість. Структура стали після середнього відпущення – троостит відпущення або троосто-мартенсит; твердість становить HRC 40—50.
Високотемпературне (високе) відпущення проводять при 500—680 °С. Структура стали після високої відпущення – сорбіт відпущення. Високе відпущення створює якнайкраще співвідношення міцності і в'язкості стали.
Гартування з високим відпущенням в порівнянні з нормалізованим або відпаленим станом одночасно підвищує σто і σ02, δ і ψ , а також K C U . Тер-
мічну обробку, що складається з гартування і високого відпущення, називають поліпшенням.
Поліпшенню піддають середньовуглецеві (0,3 – 0,5 %С) конструкційні стали, до яких пред'являються високі вимоги до межі текучості, межі витривалості і ударної в'язкості. Поліпшення значно підвищує конструктивну міцність стали, зменшуючи чутливість до концентраторів напруги, роботу розвитку тріщини, знижує температуру верхнього і нижнього порогу холодноламкості.
Відпущення при 550 – 600 °С протягом 1 – 2 годин майже повністю знімає залишкові напруження, що виникли при гартуванні. Залежно від габаритних розмірів виробу тривалість високого відпущення складає 1,0 – 6 годин.
Гартуванню з високим відпущенням (600 – 700°С) піддають низьковуглецеву і низьколеговану товстолистову сталь,це підвищує її опір крихкому руйнуванню і зменшує схильність до старіння.
Лекція 15.
15. Кольорові метали та сплави на їх основі
15.1. Мідь та сплави на її основі
Мідь – метал червоно-рожевого кольору, пластичний, м'який. Щільність становить 8,96 г/см3, температура плавлення 1083ºС, кристалічні ґратки ГЦК. Мідь хімічно малоактивна. Має високий електроопір, прийнятий в техніці за еталонне значення – 100%. Важливе значення також має теплопровідність міді. Механічні властивості міді не високі і суттєво залежать від умов виготовлення деталей. Серед технологічних властивостей можна відзначити гарну оброблюваність тиском, можливість пайки і досить низькі ливарні властивості, зварюваність та оброблюваність різанням. Чиста мідь використовується в електротехніці для виготовлення електричних, телеграфних та телефонних дротів (М00, М0, М1), теплотехнічних виробів (нагрівачів, теплообмінників, радіаторів) у вакуумній техніці, а також в якості основи мідних сплавів.
Основними перевагами мідних сплавів є висока електропровідність, ни-
зький коефіцієнт тертя, висока пластичність, значна міцність (до 1200МПа), корозійна стійкість в агресивних середовищах, можливість термомеханічної обробки.
Мідні сплави поділяються на:
Латуні – сплав Сu + Zn;
Бронзи – сплав Cu + Sn, Cu +Al, Si, Be;
Мідно-нікелеві сплави.
По хімічному складу сплави міді бувають прості (бінарні) та спеціальні леговані (багатокомпонентні)
По технологічним властивостям і способу виготовлення мідні сплави поділяють на деформовані та ливарні. З деформованих виготовляють листи, труби, напівфабрикати різного профілю. З ливарних – корпусні, фасонні виливки та художні вироби.
Зміцнення мідних сплавів термічною обробкою ускладнене, тому що розчинність легуючих елементів в міді обмежена, краще застосовувати термомеханічне зміцнення чи наклеп. Пластичність мідних сплавів підвищується відпалюванням (600 – 700ºС).
15.2. Латунь.
Латунями (ГОСТ15527 – 70 і ГОСТ17711 – 80) називають сплав міді з цинком та різними легуючими добавками (Al, Sn, Mn, Ni, Si, Pb та іншими, сума котрих не більше 10%). Вміст цинку в латуні змінюється до 49%. Цинк визначає механічні властивості літуні: чим більше Zn, тим вище твердість, міцність і як наслідок крихкість, при цьому знижуються характеристики пластичності. З збільшенням вмісту Zn колір