Предмет:
Тип роботи:
Лекція
К-сть сторінок:
14
Мова:
Українська
енергії (2.37), маємо
(2.40)
Звідси бачимо, що при розширенні газу (A>0) приріст температури , в чому і треба було переконатися. Описане явище – спосіб отримання низьких температур.
Вираз (2.40) дозволяє розрахувати роботу ідеального газу при адіабатичному процесі. Якщо використати рівняння Менделєєва-Клапейрона, то цю роботу можна виразити через параметри p та V.
Щоб здійснити адіабатичний процес, треба надійно теплоізолювати систему або здійснювати його дуже швидко, щоб теплообмін практично не встигав відбутися. Другий з цих варіантів зустрічається у природі. Наприклад, величезні маси атмосферного повітря, нагріваючись біля поверхні Землі, піднімаються вгору, потрапляють в області нижчих тисків і розширюються. Цей процес адіабатичний, бо через погану теплопровідність повітря теплообміном при цьому можна знехтувати. Виконуючи роботу розширення проти зовнішнього тиску, повітря охолоджується, а водяна пара перетворюється в насичену й конденсується (хмари).
Згущення і розрідження, що утворюються у звуковій хвилі в газах, – це також по суті процеси адіабатичного стиснення і розширення газу. Оскільки швидкість поширення звуку немала (340м/с при кімнатних температурах), процеси тут відбуваються так швидко, що за цей короткий час теплообміном можна знехтувати.
Приступимо тепер до виведення рівняння адіабати. За основу беремо вираз 1-го принципу термодинаміки для цього процесу (в диференціальній формі (2.30)):
(2.41)
Розпишемо ліву частину цього рівняння. Елементарну роботурозрахуємо на основі формули (2.25),
причому тиск підставимо, взявши його з рівняння Менделєєва-Клапейрона (2.3):
Елементарний приріст внутрішньої енергії dU запишемо, продиференціювавши вираз (2.37):
Тепер замість (2.41) маємо
Поділимо далі останнє рівняння на добуток і одержимо
(2.42)
Коефіцієнт запишемо, виразивши газову сталу через різницю з рівняння Майєра (2.38):
де введено позначення
(2.43)
Тепер співвідношення (2.42) приймає вигляд
Оскільки , то наше рівняння запишеться у формі
або .
Звідси випливає, що
Або
(2.44)
Співвідношення (2.44) є рівнянням адіабати або рівнянням Пуасона. Параметр , введений вище, називається показником адіабати або коефіцієнтом Пуасона. Для повітря, наприклад, (в сухому повітрі 99%
двохатомних молекул!). В загальному випадку , оскільки .
Визначаючи абсолютну температуру з рівняння Менделєєва-Клапейрона і підставляючи одержаний вираз у співвідношення (2.44), одержимо іншу форму запису рівняння Пуасона:
(2.45)
Згадаємо, що рівняння ізотерми . Порівняння двох останніх виразів приводить до висновку, що адіабата графічно “крутіша” від ізотерми (див. рис.2.9).
Якщо з рівняння Менделєєва-Клапейрона або з рівняння (2.45) визначити об'єм V і підставити одержаний вираз у (2.44), то матимемо третю форму запису рівняння Пуасона
(2.46)
Зауваження: 1) рівняння Пуасона (2.44–46) правильні за умови, що кількість газу (чи його маса) незмінні під час процесу; 2) величини “const” у всіх виписаних рівняннях різні.
6.7 Оборотні та необоротні процеси. Цикли
Термодинамічний процес, що є неперервною послідовністю рівноважних станів, називається рівноважним (або квазістатичним). Якщо рівноважні стани на діаграмах (p-V чи p-T, чи V-T) зображають точками, то рівноважному процесу відповідає деяка крива, що проходить через ці точки.
Термодинамічний процес називається оборотним, якщо при виконанні його системою спочатку у прямому, а потім у зворотному напрямку, система і зовнішнє середовище повертаються у вихідний стан. Всякі інші процеси – необоротні. Можна показати, що критерієм оборотності процесу є його рівноважність.
Оборотні процеси – ідеалізовані, до них реальні процеси лише можуть наближатися. Так, механічні процеси були б оборотними, якби не було тертя і не перетворювалася б механічна енергія у внутрішню. Всі реальні процеси, що супроводяться тертям, теплопровідністю або випромінюванням, є необоротними.
Коловим (круговим) процесом або циклом називають таку послідовність процесів, після завершення якої система повертається до початкового стану. На повторенні відповідних циклів грунтується неперервна дія кожної теплової машини (двигуна). Тому в колових процесах нас цікавитиме насамперед робота, яку виконує система в результаті виконання циклу. Речовину, над якою здійснюється коловий процес, називають робочим тілом.
На діаграмі p-V цикл зображається у вигляді деякої замкнутої кривої (на рис. 2.10 крива АВСDА). Першій частині циклу (крива АВС) відповідає розширення робочого тіла, воно виконує позитивну роботу, що чисельно рівна площі фігури , заштрихованій вертикальними лініями. У другій частині циклу, коли робоче тіло
стискається, система виконує негативну роботу (робота виконується над системою!), що чисельно дорівнює площі фігури , заштрихованій горизонтальними лініями. Механічна робота А, виконана робочим тілом за цикл, чисельно дорівнює площі фігури АВСDА.
Очевидно, що для циклу зміна внутрішньої енергії робочого тіла рівна нулю. Тому на основі 1-го принципу термодинаміки одержується, що Q=A, тобто робота системи за цикл виконується за рахунок кількості теплоти, одержаної ззовні. Треба пам'ятати при цьому, що