Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Эволюция звезды

Предмет: 
Тип роботи: 
Реферат
К-сть сторінок: 
19
Мова: 
Українська
Оцінка: 

поздних стадиях, - это нейтринные потери энергии. В звездных недрах при T ~108 К основную роль в рождении нейтрино играют: фотонейтринный процесс  , распад квантов плазменных колебаний (плазмонов) на пары нейтрино-антинейтрино ( ), аннигиляция пар электрон-позитрон ( ) и урка-процессы. Важнейшая особенность нейтрино состоит в том, что вещество звезды для них практически прозрачно и нейтрино беспрепятственно уносят энергию из звезды. 

Гелиевое ядро, в котором еще не возникли условия для горения гелия, сжимается. Температура в слоевом источнике, прилегающем к ядру, увеличивается, скорость горения водорода возрастает. Необходимость переноса возросшего потока энергии приводит к расширению оболочки, на что тратится часть энергии. Поскольку светимость звезды не изменяется, температура ее поверхности падает, и на Г.-Р.д. звезда перемещается в область, занимаемую красными гигантамию Время перестройки звезды на два порядка меньше времени выгорания водорода в ядре, поэтому между полосой ГП и областью красных сверхгигантов мало звезд. С уменьшением температуры оболочки возрастает ее прозрачность, вследствие этого появляется внеш. конвективная зона и возрастает светимость звезды. 
Отвод энергии из ядра посредством теплопроводности вырожденных электронов и нейтринных потерь у звезд с  оттягивает момент загорания гелия. Температура начинает заметно расти лишь тогда, когда ядро становится почти изотермичным. Горение 4He определяет эволюцию звезд с момента, когда энерговыделение превышает потери энергии путем теплопроводности и излучения нейтрино. Это же условие относится к горению всех последующих видом ядерного топлива. 
Примечательная особенность звездных ядер из вырожденного газа, охлаждаемых нейтрино, - это "конвергенция" - сближение треков, которые характеризуют соотношение плотности  и температуры Tc в центре звезды (рис. 3). Скорость энерговыделения при сжатии ядра определяется скоростью присоединения вещества к нему через слоевой источник, которая зависит только от массы ядра при данном виде топлива. В ядре должен поддерживаться баланс притока и оттока энергии, поэтому в ядрах звезд устанавливается одинаковое распределение температуры и плотности. К моменту загорания 4He масса ядра  в зависимости от содержания тяжелых элементов. В ядрах из вырожденного газа загорание 4He имеет характер теплового взрыва, т.к. энергия, выделяющаяся при горении, идет на увеличение энергии теплового движения электронов, но давление с ростом температуры почти не изменяется до тех пор, пока тепловая энергия электронов не сравняется с энергией вырожденного газа электронов. Тогда вырождение снимается и ядро быстро расширяется - происходит гелиевая вспышка. Гелиевые вспышки, вероятно, сопровождаются потерей звездного вещества. У шаровых звездных скоплений, где массивные звезды уже давно закончили эволюцию и красные гиганты имеют массы  , звезды на стадии горения гелия находятся на горизонтальной ветви Г.-Р.д. 
В гелиевых ядрах звезд с  газ не вырожден, 4He загорается спокойно, но ядра также расширяются из-за возрастания Tc. У наиболее массивных звезд загорание 4He происходит еще тогда, когда они являются голубыми сверхгигантами. Расширение ядра ведет к уменьшению  T в области водородного слоевого источника, и светимость звезды после гелиевой вспышки падает. Для поддержания теплового равновесия оболочка сжимается, и звезда уходит из области красных сверхгигантов. Когда 4He в ядре истощается, снова начинается сжатие ядра и расширение оболочки, звезда опять становится красным сверхгигантом. Образуется слоевой источник горения 4He, который доминирует в энерговыделении. Снова возникает внеш. конвективная зона. По мере выгорания гелия и водорода толщина слоевых источников уменьшается. Тонкий слой горения гелия оказывается термически неустойчивым, т.к. при очень сильной чувствительности энерговыделения к температуре ( ) теплопроводность вещества недостаточна для того, чтобы погасить тепловые возмущения в слое горения. При тепловых вспышках в слое возникает конвекция. Если она проникает в слои, богатые водородом, то в результате медленного процесса нейтронного захвата (s-процесса) синтезируются элементы с атомными массами  от 22Ne до 209B. 
Давление излучения на пыль и молекулы, образующиеся в холодных протяженных оболочках красных сверхгигантов, приводит к непрерывной потере вещества со скоростью до  в год. Непрерывная потеря массы может дополняться потерями, обусловленными неустойчивостью слоевого горения или пульсациями, что может привести к выбросу одной или нескольких оболочек. Когда количество вещества над углеродно-кислородным ядром становится меньшим некоторого предела, оболочка для поддержания температуры в слоях горения вынуждена сжиматься до тех пор, пока сжатие способно поддерживать горение; звезда на Г.-Р.д. смещается почти горизонтально влево. На этом этапе неустойчивость слоев горения также может приводить к расширению оболочки и потере вещества. Пока звезда достаточно горяча, она наблюдается как ядро планетарной туманности с одной или несколькими оболочками. Когда слоевые источники смещаются к поверхности звезды настолько, что температура в них становится ниже необходимой для ядерного горения, звезда охлаждается, превращаясь в белый карлик с  , излучающий за счет расхода тепловой энергии ионного компонента его вещества. Характерное время охлаждения белых карликов ~ 109 лет. Нижняя граница масс одиночных звезд, превращающихся в белые карлики, неясна, она оценивается в 3-6  . У звезд с  электронный газ вырождается на стадии роста углеродно-кислородных (C,O-) ядер звезд. Как и в гелиевых ядрах звезд, из-за нейтринных потерь энергии происходит "конвергенция" условий в центре и к моменту загорания углерода в C,O-ядре  . Загорание 12C при таких условиях, скорее всего, имеет характер взрыва и приводит к полному разрушению звезды. Полного разрушения может не произойти, если  . Такая плотность достижима, когда скорость роста ядра определяется аккрецией вещества спутника в тесной двойной системе. 
 
4. Стадии
Фото Капча