з іншою по колу, тобто робоча станція 1 з робочою станцією 2, робоча станція 3 з робочою станцією 4 і т.д. Остання робоча станція пов'язана з першою. Комунікаційна зв'язок замикається в кільце. Повідомлення циркулюють регулярно по колу. Робоча станція посилає по визначеній кінцевій адресі інформацію, попередньо отримавши з кільця запит. Пересилання повідомлень є дуже ефективною, тому що більшість повідомлень можна відправляти «у дорогу» по кабельній системі одне за іншим. Дуже просто можна зробити кільцевий запит на всі станції. Тривалість передачі інформації збільшується пропорційно кількості робочих станцій, що входять в обчислювальну мережу.
Пошук
Інформаційні системи та технології в економіці
Предмет:
Тип роботи:
Навчальний посібник
К-сть сторінок:
296
Мова:
Українська
Основна проблема при кільцевій топології полягає в тому, що кожна робоча станція повинна активно брати участь у пересиланні інформації, і у разі виходу з ладу хоча б однієї з них вся мережа паралізується. Несправності в кабельних з'єднаннях локалізуються легко.
Підключення нової робочої станції вимагає коротко термінового вимикання мережі, тому що під час установки кільце повинне бути розімкнутими. Обмеження на довжину обчислювальної мережі не існує, так як воно, у кінцевому рахунку, визначається винятково відстанню між двома робочими станціями.
Спеціальною формою кільцевої топології є логічна кільцева мережа. Фізично вона монтується як з'єднання зоряних топологій. Окремі зірки включаються за допомогою спеціальних комутаторів (Hub - концентратор), які іноді називають «хаб». Залежно від числа робочих станцій і довжини кабелю між робочими станціями застосовують активні або пасивні концентратори. Активні концентратори додатково містять підсилювач для підключення від 4 до 16 робочих станцій. Пасивний концентратор є виключно розветвітельним пристроєм (максимум на три робочі станції).
Керування окремою робочою станцією в логічній кільцевій мережі відбувається так само, як і в звичайній кільцевій мережі. Кожній робочій станції присвоюється відповідний адресу, за якою передається керування (від старшого до молодшого і від самого молодшого до самого старшого). Розрив з'єднання відбувається тільки для нижче розташованого (найближчого) вузла обчислювальної мережі, так що лише в рідких випадках може порушуватися робота всієї мережі.
3. Шинна топологія. При шинної топології середовище передачі інформації представляється у формі комунікаційного шляху, доступного дня всіх робочих станцій, до якого вони усі повинні бути підключені. Всі робочі станції можуть безпосередньо вступати в контакт з будь-якою робочою станцією, наявною в мережі.
Це найбільш дешева схема організації мережі, що припускає безпосереднє підключення всіх мережевих адаптерів до мережевого кабелю. Всі комп'ютери в мережі підключаються до одного кабелю. Перший і останній комп'ютер повинні бути розв'язані. У ролі розв'язки (термінатора) виступає простий резистор, що використовується для гасіння сигналу, що досягає кінця мережі, щоб запобігти виникненню перешкод. Крім того, один і тільки один кінець мережного кабелю повинен бути заземлений.
Робочі станції в будь-який час, без переривання роботи всієї обчислювальної мережі, можуть бути підключені до неї або відключені. Функціонування обчислювальної мережі не залежить від стану окремої робочої станції. Завдяки тому, що робочі станції можна включати без переривання мережних процесів і комунікаційного середовища, дуже легко прослуховувати інформацію,тобто відгалужується інформацію з комунікаційного середовища.
Для з'єднання комп'ютерів між собою використовують засоби комутації. В якості таких засобів найбільш часто використовуються кручена пара, коаксіальний кабель і оптоволоконні лінії. При виборі типу кабелю враховують наступні показники:
+ вартість монтажу та обслуговування;
+ швидкість передачі інформації;
+ обмеження на величину відстані передачі інформації (без додаткових підсилювачів-повторювачів (репітерів));
+ безпеку передачі даних.
Основна проблема полягає в одночасному забезпеченні цих показників, наприклад, найвища швидкість передачі даних обмежена максимально можливим відстанню передачі даних, при якому ще забезпечується необхідний рівень захисту даних. Легка нарощуваність і простота розширення кабельної системи впливають на її вартість.
Найбільш дешевим кабельним з'єднанням є вите провідне з'єднання, часто зване «крученою парою» (twisted pair). Вона дозволяє передавати інформацію зі швидкістю до 10 Мбіт /хв., легко нарощується, проте є помехонезащіщенною. Довжина проводу не може перевищувати 1000 м при швидкості передачі 1 Мбіт / сек. Перевагами є низька ціна і простота установки. Для підвищення перешкодозахищеності інформації часто використовують екрановані виту пару, тобто виту пару, вміщену в екранує оболонку, подібно до екрану коаксіального кабелю. Це збільшує вартість витої пари і наближає її ціну до ціни коаксіального кабелю.
Коаксіальний кабель має середню ціну, добре захищений і застосовується для зв'язку на великі відстані (декілька кілометрів). Швидкість передачі інформації від 1 до 10 Мбіт /сек., а в деяких випадках може досягати 50 Мбіт / сек. Коаксіальний кабель використовується для основної і широкосмугової передачі інформації.
Широкосмуговий коаксіальний кабель несприйнятливий до перешкод, легко нарощується, але ціна його висока. Швидкість передачі інформації до 500 Мбіт / сек. При передачі інформації в базисної смузі частот на відстань більше 1,5 км потрібно підсилювач, або так званий репітер (повторювач). Тому сумарну відстань при передачі інформації збільшується до 10 км.Для обчислювальних мереж з топологією шина або дерево, коаксіальний кабель повинен мати на кінці узгоджувальний резистор (термінатор).
Ethernet-кабель також є коаксіальним кабелем з хвильовим опором 50 Ом. Його називають ще товстий Ethernet (thick) або жовтий кабель (yellow cable). Він використовує 15-контактне стандартне включення. Внаслідок перешкодозахищеності є дорогою альтернативою звичайним коаксіальним кабелях. Максимально доступний відстань без повторювача не перевищує 500 м, а загальна відстань мережі