Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Обгрунтування конструктивних параметрів та режимів роботи млинів примусового подрібнення з обертальним інтенсифікатором

Предмет: 
Тип роботи: 
Автореферат
К-сть сторінок: 
49
Мова: 
Українська
Оцінка: 

наукових фахових виданнях. З числа останніх – 12 одноосібних. Результати робіт захищені 11 авторськими свідоцтвами на винахід. 

Структура і обсяг дисертації. Дисертаційна робота складається з вступу, семи розділів, загальних висновків, списку використаних джерел з 264 найменувань та додатків. Основний текст роботи викладений на 297 сторінках і містить 105 рисунків на 60 сторінках і 36 таблиць на 17 сторінках. 
 
ЗМІСТ РОБОТИ
 
У вступі обгрунтована актуальність досліджень і сформульовані наукова проблема, мета і задачі досліджень, показані їх зв'язок з науковими планами та наукова новизна, практичне значення отриманих результатів та їх апробація, а також дані по публікації досліджень. 
В першому розділі досліджені сучасний стан подрібнювального устаткування та аналіз тенденцій його розвитку. зроблений висновок про домінування традиційних барабанних млинів з практично вичерпаними можливостями подальшого покращання металомісткості, енергоозброєності, питомих продуктивності, витрат енергії, подрібнювальних тіл, футерівок, об'ємів та площ виробничих приміщень. Поряд з цим є труднощі із забезпеченням надійності та взагалі створенням потужних млинів та їх привода. Для покращання ситуації іде пошук нових методів та засобів інтенсифікації подрібнення, розробка нових технологій та високонапружених млинів. обгрунтовані доцільність надкритичних частот обертання та підвищення опору внутрішньомлинового завантаження, ефективність тертя в умовах підвищеного тиску та роздавлювання, корисність самоподрібнення для кращого розкриття корисних компонентів та поперечної сегрегації внутрішньомлинового завантаження для захисту робочих поверхонь млинів, ефективність застосування вібрацій, високих температур та багато інших. 
Серед принципово нових пропозицій – млин примусового подрібнення професора Д. К. Крюкова, надстиснення сировини у різних напрямках, технологія CQ+ та інші. За літературними джерелами покращання в% питомих показників подрібнення за рахунок використання нових засобів та методів – у відповідності до даних табл. 1. 
Видно, що для зниження питомих енерговитрат найбільш ефективні надстиснення сировини в різних напрямках у валкових млинах та технологія CQ+. На окремих матеріалах близький результат при примусовому подрібненні. Обгрунтований і висновок про позитивний вплив на поліпшення енерговитрат процесів тертя і нагрівання, вібраційного подрібнення. Слід врахувати, що використання валкових млинів із надтиском з готовим продуктом у вигляді брикетів означає, на відміну від млинів примусового подрібнення, необхідність у застосування доподрібнення з відповідними додатковими витратами. 
 
Таблиця 1
До порівняння характеристик засобів подрібнення
 
Стосовно технології CQ+ слід зазначити, що із доступних літературних джерел важко зробити достатньо виважений висновок стосовно продуктивності та інших показників подрібнення зважаючи на малу досягнуту одиничну продуктивність (0, 12 т/год). Істотною перевагою млинів примусового подрібнення є значне, у порівнянні з іншими, зростання питомої продуктивності з одночасною економією витрат футерівки та можливим виключенням необхідності вживати подрібнювальні тіла. Разом з тим зазначено, що у зв'язку з концентрацією місць зношування робочої поверхні ці млини мають недостатній міжремонтний термін. Отже, для успішного впровадження технології та млинів примусового подрібнення в промислові умови слід підвищити їх надійність та працездатність, розробити достатньо ефективні методи визначення їх розмірів та навантажень на конструктивні елементи, довести очікувані переваги від їх застосування у процесах подрібнення різних матеріалів, вибрати конструкції та обгрунтувати ефективність роботи розвантажувальних пристроїв та складових електромеханічних систем млинів, поєднати в одній конструкції переваги валкових млинів і примусового подрібнення. 
У звязку з зазначеним зроблений висновок, що установлення закономірностей механіки взаємодії внутрішньомлинового завантаження з робочими поверхнями млинів, впливу його властивостей на енергетичні та технологічні показники примусового подрібнення різних матеріалів і обгрунтування раціональних параметрів засобів забезпечення працездатності млинів і їх електромеханічних систем є актуальною науковою проблемою і завданням великої практичної ваги. Для вирішення поставленої проблеми сформульовані наукові завдання. 
У другому розділі шляхом експериментальних досліджень характеру та інтенсивності зношування встановлено, що для слабких матеріалів інтенсифікатор може бути нерухомим, з потовщеним захисним хвостовиком, що профіль інтенсифікатора суттєво впливає на форму епюри тиску у клиноподібній зоні, а наявність перед хвостовиком ділянки різкого розширення відчутно віддаляє максимум тиску від останнього з відповідним зменшенням інтенсивності його зношування та підвищенням міжремонтного терміну млина в цілому. Встановлений позитивний вплив на працездатність млина щілин перед хвостовиками. У підсумку інтенсифікатор запропоновано виготовляти у вигляді порожнистого циліндра з можливістю обертання та поперечними щілинами (рис. 1), достатніми для затримки перед хвостовиками лише найбільших кусків сировини (при самоподрібненні) або подрібнювальних куль, причому хвостовики у декілька разів товщі за них, а футерівка барабана – змінної жорсткості. Запропоновані ресурсозберігаючі млини, на відміну від відомих, виключають можливість утворення у місці спряження хвостовика з робочою поверхнею нерухомої призми із кусків малих розмірів, що призводило до інтенсивного зношування останнього внаслідок ковзання по ньому стиснених центрифугуючого шару та частини клиноподібної зони і не давало змоги використати захисну здатність великих кусків або подрібнювальних куль. Запропоноване розширення зони віддаляє максимум тиску від хвостовика і додатково зменшує темп його спрацювання. Змінна жорсткість футерівки барабана – завдяки рихленню центрифугуючого шару і підсиленню поперечної сегрегації внутрішньомлинового завантаження – створює додаткові сприятливі умови для віддалення основної зони подрібнення від робочих поверхонь. Розроблені рекомендації разом із зростанням в декілька разів кількості почергово працюючих хвостовиків за рахунок обертання інтенсифікатора сприяють суттєвому збільшенню міжремонтного терміна млинів. 
Показано, що радіус Ri та ексцентриситет  інтенсифікаторів слід визначати з урахуванням вихідної пористості  , необхідного рівня напруженості руйнування   та спільного
Фото Капча