Предмет:
Тип роботи:
Навчальний посібник
К-сть сторінок:
111
Мова:
Русский
непредсказуемым) изменениям» и система, по существу, непредсказуема.
Принятие решений в условиях неопределённости.
Условиями неопределённости считается ситуация, когда результаты принимаемых решений неизвестны. Неопределенность подразделяется на стохастическую (имеется информация о распределении вероятности на множестве результатов), поведенческую (имеется информация о влиянии на результаты поведения участников), природную (имеется информация только о возможных результатах и отсутствует о связи между решениями и результатами) и априорную (нет информации и о возможных результатах).
Выбор при неопределённости.
Эта область представляет ядро теории принятия решений.
Термин, теперь известный как «ожидаемая ценность» (математическое ожидание) был известен с XVII века. Блез Паскаль (фр.) использовал это в его известном пари, (пари Паскаля — классический пример выбора при неопределённости. Неопределённость, согласно Паскалю, — существует или нет Бог. Личная вера или неверие в Бога — выбор, который должен быть сделан каждым. Однако, награда за веру в Бога, если Бог фактически существует, бесконечна. Поэтому, хотя вероятность существования Бога не так велика, а ожидаемая ценность веры превышает ценность неверия, то лучше все-таки верить в Бога), который содержится в его работе «Pensées», изданной в 1670. Идея ожидаемой ценности заключается в том, что перед лицом множества действий, когда каждое из них может дать несколько возможных результатов с различными вероятностями, рациональная процедура должна идентифицировать все возможные результаты, определить их ценности (положительные или отрицательные) и вероятности, затем перемножить соответствующие ценности и вероятности и сложить, чтобы дать в итоге «ожидаемую ценность». Действие, которое будет выбрано, должно давать наибольшую ожидаемую ценность.
В 1738, Даниил Бернулли (швейц.) опубликовал влиятельную статью, названную «Предложение новой теории измерения риска (Exposition of a New Theory on the Measurement of Risk)», в котором он использует Санкт-Петербургский парадокс, чтобы показать, что теория ожидаемой ценности должна быть нормативно неправильной. Он также даёт пример, в котором голландский торговец пробует решить, застраховать ли груз, посылаемый из Амстердама в Санкт-Петербург зимой, когда известно, что есть 5%-ный шанс, что судно и груз будут потеряны. В его решении, он определяет функцию полезности и вычисляет ожидаемую полезность, а не ожидаемую финансовую ценность.
В XX столетии, интерес был повторно подогрет работой Абрахама Вальда (1939) (венгр.), указывающей, что две центральных проблемы ортодоксальной статистической теории, а именно, статистическое испытание гипотез и статистическая теория оценивания, могли оба быть расценены как специфические специальные случаи более общей теории принятия решений. Эта работа вводила большую часть «ментального пейзажа» современной теории принятия решений, включая функции потери, функции риска, допустимые решающие правила, априорные распределения, байесовские правила решения, и минимаксные решающие правила. Термин «теория принятия решений» непосредственно начал использоваться в 1950 году Э. Л. Леманном.
Теория перспектив Дэниэла Канемана и Амоса Тверски помещает поведенческую экономику на более прочную опору свидетельств. Эта теория указала, что в фактическом человеческом принятии решений (в противоположность нормативному) «потери чувствительнее выигрышей». Кроме того, люди более сосредоточены на «изменениях» полезности своих состояний, чем на полезности самих состояний, а оценка соответствующих субъективных вероятностей заметно смещена относительно присущей каждому «точки отсчёта».
3. Статистический анализ
Математи́ческая стати́стика — наука о математических методах систематизации и использования статистических данных для научных и практических выводов.
Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надёжность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объём выборки для получения результатов требуемой точности при выборочном обследовании).
Предмет и методы математической статистики.
В зависимости от математической природы конкретных результатов наблюдений статистика математическая делится на статистику чисел, многомерный статистический анализ, анализ функций (процессов) и временных рядов, статистику объектов нечисловой природы.
Выделяют описательную статистику, теорию оценивания и теорию проверки гипотез.
Описательная статистика есть совокупность эмпирических методов, используемых для визуализации и интерпретации данных (расчет выборочных характеристик, таблицы, диаграммы, графики и т.д.), как правило, не требующих предположений о вероятностной природе данных. Некоторые методы описательной статистики опираются на возможности современных компьютеров. К ним относятся, в частности, кластерный анализ, нацеленный на выделение групп объектов, похожих друг на друга, и многомерное шкалирование, позволяющее наглядно представить объекты на плоскости.
Методы оценивания и проверки гипотез опираются на вероятностные модели происхождения данных. Эти модели делятся на параметрические и непараметрические. В параметрических моделях предполагается, что характеристики изучаемых объектов описываются посредством распределений, зависящих от (одного или нескольких) числовых параметров. Непараметрические модели не связаны со спецификацией параметрического семейства для распределения изучаемых характеристик. В математической статистике оценивают параметры и функции от них, представляющие важные характеристики распределений (например, математическое ожидание, медиана, стандартное отклонение, квантили и др.), плотности и функции распределения и пр. Используют точечные и интервальные оценки.
В математической статистике есть общая теория проверки гипотез и большое число методов, посвящённых проверке конкретных гипотез. Рассматривают гипотезы о значениях параметров и характеристик, о проверке однородности (то есть о совпадении характеристик или функций распределения в двух выборках), о согласии эмпирической функции распределения с заданной функцией распределения или с параметрическим семейством таких функций, о симметрии распределения и др.
Задачи восстановления зависимостей активно изучаются более 200 лет, с момента разработки К. Гауссом в 1794 г. метода наименьших квадратов.
В настоящее время компьютеры играют большую роль в