Предмет:
Тип роботи:
Стаття
К-сть сторінок:
15
Мова:
Українська
Зосередивши увагу на спробi конвенцiалiстiв логiстично пояснити роль iнтуїцiї в науковому пiзнаннi можна зробити висновок, що iнструментальнiсть конвенцiй не має волюнтарно-суб'єктивiстського характеру. Iнтуїцiя як джерело конвенiональних угод розглядається у виглядi здатностi створювати системно-аналоговий зв'язок мiж попереднiми (традицiйними) i ново-набутими уявленнями, а не як довiльна гра уявлення суб'єктивного духу.
Це демонструє наведений у другому роздiлi приклад демонстрацiї логiстичностi iнтуїцiї пов'язаний з вправами англiйського математика Л. Керроелла.
Конвенцiоналiзм склався як фiлософiї науки, що визнає довiльнiсть вибору вихiдних понять i аксiом (обмежену лише деякими коммунiкативно-формальними вимогами щодо спiввiдношення помiж членами прийнятої групи положень). Це усувало, на думку прихильникiв цього напрямку, необхiднiсть певного «вибору» мiж матерiалiстичним та iдеалiстичним (взагалi «метафiзичними» – у термiнологiї неопозитивiзму) вирiшенням даного питання.
В науковому вiдношеннi конвенцiоналiсти намагались спертись на такий факт, як можливiсть iснування незалежного ланцюга понять i законiв, що введенi в яку-небудь науку iз-зовнi i необхiднi для неї та незалежнi вiд змiсту самої цiєї науки. В цьому розумiннi математика «запозичує» з логiки деякi закони i правила, що виглядає як привнесення цих законiв i правил у математику суб'єктом. Наприклад, згiдно iдеї Д. Гiльберта, початковi поняття геометрiї можуть бути сконструйованi через формальнi визначення, що їх покладають, i вiд останнiх не вимагається «очевидностi» i вони неначе вносяться iз-зовнi. Що ж стосується самої логiки, то за межi кожної даної логiчної системи виходить питання про вибiр та обгрунтування її аксiом (цi аксiоми можна, з логiчної точки зору, розглядати усерединi даної системи як результат виведення з пустої множини засновкiв).
Безпосередню роль у виникненнi конвенцiоналiзму зiграло вiдкриття неевклiдових геометрiй[Див. наприкл. : 1], до чого пiзнiше приєдналась побудова рiзноманiтних систем формальної логiки, в тому числi й багатозначних (Лукасевич, Пост, Брауер та iншi). Факт внутрiшньої несуперечливостi рiзних систем формальної логiки i рiзних геометрiй виглядав як доказ їх незалежностi вiд емпiричних моделей, на вiдмiну вiд геометрiї Евклiда, залежнiсть котрої вiд повсякденного досвiду викликала набагато менше сумнiвiв. На користь конвенцiоналiзму використовувався й той факт, що iнодi одну й ту ж теоретичну систему деякої науки можна будувати, виходячи з рiзних наборiв аксiом.
Самi по собi природничонауковi конвенцiї ще не означають конвенцiоналiзму як фiлософського вчення i мають суто науково-методологiчне значення. Конвенцiональнiсть деяких елементiв наукової теорiї, наприклад, форми математичного представлення законiв фiзичних процесiв, в наш час є загальновизнаною i не заперечується нi фiлософами, анi представниками точних наук. Але обгрунтований Пуанкаре природничонауковий конвенцiоналiзм деякими фiлософами (Е. Леруа, А. Бергсон) вiдразу ж був розгорнутий у фiлософський конвенцiоналiзм, котрий заперечував об'єктивний змiст в будь-яких наукових побудовах i в науцi взагалi. Привiд для такої трансформацiї дав сам Пуанкаре, стверджуючи, що вибiр тiєї чи iншої форми теоретичного опису серед низки рiвноправних форм здiйснюється лише на пiдставi «зручностi», «корисностi». А це iнструменталiстське пояснення викликало можливiсть обгрунтування позицiї, коли побудовам науки почали приписувати винятково суб'єктивний характер. Слiд вказати, що у книзi «Останнi думки» Пуанкаре й сам констатував невдалiсть запозиченого ним термiну «зручнiсть».
Засновник методологiї конвенцiоналiзму Жюль Анрi Пуанкаре (1854-1912) – видатний французький математик, фiзик та механiк. Вiн працював вiдразу в багатьох галузях фiзико-математичного знання. Недаремно американський iсторик науки Е. Белл називав його (разом iз Д. Гiльбертом) «останнiм унiверсалiстом». За тридцять з лишнiм рокiв напруженої творчої дiяльностi Пуанкаре залишив величнi працi практично у всiх областях математичної науки. Фундаментальнiсть та розмаїття пошукiв зробили його загальновизнаним лiдером цiєї науки в очах сучасникiв.
Але охоплене Пуанкаре коло проблем не обмежується лише математикою. Такими ж значними, як i в математицi, були його дослiдження у фiзицi. Наприкiнцi ХIХ столiття Пуанкаре критично переосмислив i внiс рiшучi оновлення у математичний апарат «небесної механiки», який складався на протязi двох столiть. На початку розвитку радiотехнiки вiн виступив з теоретичним аналiзом досягнень в цiй областi. А у дванадцятитомному «Курсi математичної фiзики», який вiн написав у наслiдок читання протягом декiлькох рокiв вiдповiдних лекцiй у Сорбоннi, розглядались всi роздiли сучасної йому теоретичної фiзики. Саме в його працях вперше були зформульованi в досить повнiй та виразнiй формi всi основнi положення спецiальної теорiї вiдносностi. Вiн же першим поставив питання про необхiднiсть кардинальної змiни теорiї тяжiння Ньютона у вiдповiдностi до вимог нового принципу вiдносностi i розглянув перший варiант релятивiстської теорiї тяжiння. А в однiй з своїх останнiх праць вiн обгрунтував неминучiсть «нових» квантових уявлень у фiзицi. Тому цiлком справедливо було б стверджувати, що фiгура Пуанкаре уособлює собою той гiгантський злам у поглядах на свiт, який вiдбувся на межi ХIХ-ХХ столiть.
Починаючи з останнього десятилiття ХIХ столiття, Пуанкаре демонстрував свою схильнiсть до глибокого аналiзу загальних проблем розвитку точних наук. Вiн висловлював смiливi судження, якi поєднували в собi широкий погляд на наукове пiзнання з глибоким та вiльним володiнням iдеями та методами конкретних наук. Але необхiдно зауважити, що далеко не всi його оригiнальнi висловлювання з фiлософських проблем в подальшому завоювали таке ж визнання та схвалення, як його досягнення в галузi математики та фiзики. Це зумовлено, зокрема, тiєю непослiдовнiстю, а iнодi – й суперечливiстю, якi Пуанкаре демонстрував у своїх фiлософсько-наукових мiркуваннях.
Для нас найбiльше зацiкавлення становить те коло питань, яке Пуанкаре вiднiс у «фiлософiю науки» в якостi своєрiдної методологiї.