Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Створення бази даних оптичних лазерів

Предмет: 
Тип роботи: 
Курсова робота
К-сть сторінок: 
56
Мова: 
Українська
Оцінка: 

відкритий стан. У певному відношенні це схоже на те, якщо б висока гребля, що створювала величезний перепад рівнів води, раптом несподівано зникла. Відбувається швидке і дуже бурхливий висвічування активних центрів, в результаті чого і народжується короткий і потужний лазерний імпульс – гігантський імпульс. Його тривалість становить 10 -8 с., А максимальна потужність 10 8 Вт.

 
РОЗДІЛ 3. ЗАСТОСУВАННЯ ЛАЗЕРІВ
 
Перш за все слід зазначити, що дослідження взаємодії лазерного випромінювання з речовиною представляють виключно великий науковий інтерес. Лазери знаходять широке застосування в сучасних фізичних, хімічних і біологічних дослідженнях, що мають фундаментальний характер.
Яскравим прикладом можуть бути дослідження в області нелінійної оптики. Як вже зазначалося, лазерне випромінювання, що володіє досить високою потужністю, може оборотно змінювати фізичні характеристики речовини, що призводить до різних нелінійно-оптичних явищ.
Лазер дає можливість здійснювати сильну концентрацію світлової потужності в межах дуже вузьких частотних інтервалів: при цьому можлива також плавна перебудова частоти. Тому лазери широко застосовуються для отримання та дослідження оптичних спектрів речовин. Лазерна спектроскопія відрізняється виключно високим ступенем точності (високим дозволом). Лазери дозволяють також здійснювати виборче збудження тих чи інших станів атомів і молекул, виборчий розрив певних хімічних зв'язків. У результаті виявляється можливим ініціювання конкретних хімічних реакцій, управління розвитком цих реакцій, дослідження їх кінетики.
Пикосекундной лазерні імпульси дали початок дослідженням цілого ряду бистропротекающих процесів в речовині і, зокрема, в біологічних структурах. Зазначимо, наприклад, фундаментальні дослідження процесів фотосинтезу. Ці процеси дуже складні і, до того ж, протікають украй швидко – в пикосекундной часовій шкалі. Використання надкоротких світлових імпульсів дає унікальну можливість прослідкувати за розвитком подібних процесів і навіть моделювати окремі їхні ланки.
Роль лазерів у фундаментальних наукових дослідженнях виключно велика. Більш детальна розмова на цю тему зажадала б, однак, розгляду ряду спеціальних питань, а також відповідної підготовки читача. Тому, кажучи нижче про цілях лазерів, зосередимо увагу лише на чисто практичних цілях і, зокрема, промислових застосуваннях.
При обговоренні практичних застосувань лазерів зазвичай виділяють два напрямки. Перший напрямок пов'язують із застосуваннями, в яких лазерне випромінювання (як правило, досить високої потужності) використовується для цілеспрямованого впливу на речовину. Сюди відносять лазерну обробку матеріалів (наприклад, зварювання, термообробку, різання, пробивання отворів), лазерне поділ ізотопів, застосування лазерів в медицині і т. д. Другий напрямок пов'язують з так званими інформативними застосуваннями лазерів – для передачі та обробки інформації, для здійснення контролю і вимірювань.
 
3.1 Застосування лазерного променя в промисловості і техніці
 
Оптичні квантові генератори та їх випромінювання знайшли застосування в багатьох галузях промисловості. Так, наприклад, в індустрії спостерігається застосування лазерів для зварювання, обробки і розрізання металевих і діелектричних матеріалів і деталей у приладобудуванні, машинобудуванні і в текстильній промисловості.
Починаючи з 1964 року, малопродуктивне механічне свердління отворів стало замінятися лазерним свердлінням. Термін лазерне свердління не слід розуміти буквально. Лазерний промінь не з отвiр: він його пробиває за рахунок інтенсивного випаровування матеріалу в точці впливу. Приклад такого способу свердління – пробивання отворів у годинникових каменях, яка зараз вже є звичайною справою. Для цієї мети застосовуються твердотільні імпульсні лазери, наприклад, лазер на склі з неодимом. Отвір у камені (при товщині заготовки близько 0, 1 – 0. 5 мм.) Пробивається серією з декількох лазерних імпульсів, що мають енергію близько 0, 1 – 0, 5 Дж. і тривалістю близько 10 -4 с. Продуктивність установки в автоматичному режимі складає 1 камінь у секунду, що в 1000 разів вище продуктивності механічного свердління.
Лазер використовується і при виготовленні надтонких дротів з міді, бронзи, вольфраму та інших металів. При виготовленні дротів застосовують технологію протягування (волочіння) дроту крізь отвори дуже малого діаметру. Ці отвори (або канали волочіння) висвердлюють у матеріалах, які мають особливо високу твердість, наприклад, в надтвердих сплавах. Найбільш твердий, як відомо, алмаз. Тому краще всього протягувати тонкий дріт крізь отвори в алмазі (алмазні фільєри). Тільки вони дозволяють отримати дріт діаметром всього 10 мкм. Однак на механічне свердління одного отвору в алмазі потрібно 10 годин. Зате зовсім неважко пробити цей отвір серією з декількох потужних лазерних імпульсів. Як і у випадку з пробивкой отворів у годинникових каменях, для свердління алмазу використовуються твердотільні імпульсні лазери.
Лазерне свердління широко застосовується при отриманні отворів у матеріалах, які мають підвищену крихкістю. Як приклад можна навести підкладки мікросхем, виготовлені з глиноземний кераміки. Через високу крихкості кераміки механічне свердління виконується на «сирому» матеріалі. Обпалюють кераміку вже після свердління. При цьому відбувається деяка деформація вироби, спотворюється взаємне розташування висвердлених отворів. При використанні «лазерних свердел» можна спокійно працювати з керамічними підкладками, що вже пройшли випал.
Цікаве застосування лазера і як універсального паяльника. Припустимо, що всередині електронно-променевої трубки сталася аварія – перегорів або обірвався який-небудь провід, порушився контакт. Трубка вийшла з ладу. Здавалося б, поломка невиправно, адже ЕПТ являє собою пристрій, всі внутрішні компоненти якого знаходяться у вакуумі, всередині скляного балона, і ніякому паяльника туди не проникнути. Однак, лазерний промінь дозволяє вирішувати і такі завдання. Направляючи промінь в потрібну точку і належним чином фокусуючи його, можна здійснити зварювальну роботу.
Лазери з плавною перебудовою
Фото Капча