Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Створення бази даних оптичних лазерів

Предмет: 
Тип роботи: 
Курсова робота
К-сть сторінок: 
56
Мова: 
Українська
Оцінка: 

частоти служать основою для спектральних приладів з винятково високою роздільною силою. Наприклад, нехай потрібно дослідити спектр поглинання якої-небудь речовини. Вимірявши величину лазерного потоку, що падає на об'єкт, що вивчається, і пройшов через нього, можна обчислити значення коефіцієнта поглинання. Перебудовуючи частоту лазерного випромінювання, можна, отже, визначити коефіцієнт поглинання як функцію від довжини хвилі. Роздільна здатність цього методу збігається, очевидно, з шириною лінії лазерного випромінювання, яку можна зробити дуже малою. Ширина лінії, що дорівнює, наприклад, 10 -3 см -1 забезпечує таку ж роздільну здатність, як і дифракційна решітка з робочою поверхнею 5 м., а виготовлення таких грат являє собою майже нездійсненне завдання.

Лазери дозволили здійснити светолокатор, за допомогою якого відстань до предметів вимірюється з точністю до декількох міліметрів. Така точність недоступна для радіолокаторів.
В даний час у світі існує кілька десятків лазерних локаційних систем. Багато з них вже мають космічне значення. Вони здійснюють локацію Місяця і геодезичних штучних супутників Землі. Як приклад можна назвати лазеро-локаційних систему Фізичного інституту імені П. М. Лебедєва. Похибка вимірювання при використанні даної системи складає 40 см.
Проведення таких досліджень організовується для того, щоб точніше довідатися відстань до Місяця протягом деякого періоду часу, наприклад, протягом року. Досліджуючи графіки, що описують зміну цієї відстані з часом, вчені отримують відповіді на ряд питань, що мають наукову важливість.
Імпульсні лазерні локатори сьогодні застосовуються не тільки в космонавтиці, але і в авіації. Зокрема, вони можуть грати роль наукових вимірників висоти. Лазерний висотомір застосовувався також в космічному кораблі «Аполлон» для фотографування поверхні Місяця. Втім, у оптичних лазерних систем є і свої слабкі сторони. Наприклад, не так просто за допомогою гостронаправленої променя лазера виявити об'єкт, тому що час огляду контрольованій області простору виявляється занадто великим. Тому оптичні радіолокаційні системи використовуються разом з радіолокаційними. Останні забезпечують швидкий огляд простору, виявляють мета, а потім оптична система вимірює параметри мети і здійснює стеження за нею.
Великий інтерес представляють останні розробки в галузі створення телевізора на основі лазерних технологій. Згідно з очікуваннями фахівців, такий телевізор повинен відрізнятися надвисоким якістю зображення.
Варто також відзначити використання лазерів у вже давно відомих принтерах високої якості або лазерних принтерах. У цих пристроях лазерне випромінювання використовується для створення на спеціальному світлочутливому барабані прихованої копії друкованого зображення. [3]
 
3.2 Застосуваня лазерів у медицині
 
У медицині лазерні установки знайшли своє застосування у вигляді лазерного скальпеля. Його використання для проведення хірургічних операцій визначають наступні властивості:
1. Він виробляє щодо безкровний розріз, оскільки одночасно з розтином тканин він коагулює краю рани «заварюючи» не дуже великі кровоносні судини;
2. Лазерний скальпель відрізняється постійністю різальних властивостей. Попадання на твердий предмет (наприклад, кістка) не виводить скальпель з ладу. Для механічного скальпеля така ситуація стала б фатальною;
3. Лазерний промінь в силу своєї прозорості дозволяє хірургові бачити оперований ділянку. Лезо ж звичайного скальпеля, так само як і лезо електроножа, завжди в якійсь мірі загороджує від хірурга робоче поле;
4. Лазерний промінь розсікає тканину на відстані, не надаючи ніякого механічного впливу на тканину;
5. Лазерний скальпель забезпечує абсолютну стерильність, адже з тканиною взаємодіє тільки випромінювання;
6. Промінь лазера діє строго локально, випаровування тканини відбувається тільки в точці фокусу. Прилеглі ділянки тканини пошкоджуються значно менше, ніж при використанні механічного скальпеля;
7. Як показала клінічна практика, рана від лазерного скальпеля майже не болить і швидше загоюється.
Практичне застосування лазерів в хірургії почалося в СРСР в 1966 році в інституті імені А. В. Вишневського. Лазерний скальпель був застосований в операціях на внутрішніх органах грудної та черевної порожнин. В даний час лазерним променем роблять шкірно-пластичні операції, операції стравоходу, шлунка, кишечника, нирок, печінки, селезінки та інших органів. Дуже заманливо проведення операцій з використанням лазера на органах, що містять велику кількість кровоносних судин, наприклад, на серці, печінці.
 
3.3 Характеристики типів лазерів
 
В даний час є величезна різноманітність лазерів, що відрізняються між собою активними середовищами, потужностями, режимами роботи і іншими характеристиками. Немає необхідності всі їх описувати. Тому тут дається короткий опис лазерів, які досить повно представляють характеристики основних типів лазерів (режим роботи, способи накачування і т. д.)
Рубіновий лазер. Першим квантовим генератором світла був рубіновий лазер, створений в 1960 році. Робочим речовиною є рубін, що представляє собою кристал оксиду алюмінію Аl 2 O 3 (корунд), у який при вирощуванні введена у вигляді домішки оксид хрому Сr 2 Оз. Червоний колір рубіна обумовлений позитивним іоном Сr +3. У гратах кристала Аl 2 О 3 іон Сг +3 заміщає іон Аl +3. Внаслідок цього в кристалі виникають дві смуги поглинання: одна-у зеленій, інша-в блакитній частині спектра. Густота червоного кольору рубіна залежить від концентрації іонів Сг +3: чим більше концентрація, тим густіше червоний колір. У темно-червоному рубіні концентрація іонів Сг +3 досягає 1%.
Поряд з блакитною і зеленою смугами поглинання є два вузьких енергетичних рівня Е 1 і Е 1 ', При переході з яких на основний рівень випромінюється світло з довжинами хвиль 694,
Фото Капча