Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Економетрія

Тип роботи: 
Курс лекцій
К-сть сторінок: 
56
Мова: 
Українська
Оцінка: 

… , xm – незалежні (пояснюючі) змінні моделі (фактори), b0, b1, bm – параметри вибіркової моделі,        e – залишки моделі.

Вибіркова модель (2.2) є реальною конструкцією і будується на основі певної статистичної вибірки з генеральної сукупності. На відміну від моделі (2.1) параметри вибіркової моделі b0, b1, … , bm є оцінками (наближеними значеннями) параметрів β0, β1, βm і випадковими величинами, а залишки «e» можна оцінити (розрахувати) на основі статистичних даних. Таким чином, вибіркова модель завжди є тільки оцінкою (вдалою або невдалою) реальної але невідомої теоретичної моделі.
Вибіркова (емпірична) функція регресії для загальної лінійної економетричної моделі має наступний вигляд :
де   – оцінка математичного сподівання залежної (пояснюваної) змінної моделі, x1, x2, … , xm – незалежні (пояснюючі) змінні моделі (фактори), b0, b1, bm – параметри вибіркової регресії.
Для побудови і аналізу загальної лінійної економетричної моделі широко застосовується апарат матричної алгебри. Тому для подальших викладок подамо загальну лінійну економетричну модель у матричній формі. Оскільки теоретична модель використовується для канонічного подання деякого економічного явища або процесу, а реально оперуємо в процесі дослідження цього явища (процесу) тільки вибірковою моделлю, саме вибіркову модель подамо в матричному вигляді :
де 
  • вектор спостережень за залежною змінною моделі ;
  • матриця спостережень за пояснюючими змінними моделі, яку ще називають регресійною матрицею ;
  • вектор оцінок параметрів моделі (вектор параметрів вибіркової моделі) ;
  • вектор залишків моделі. 
Для всіх наведених вище форм представлення загальної лінійної моделі прийняті наступні загальні позначення, які будуть у подальшому постійно використовуватися :
n – розмір статистичної вибірки (кількість спостережень в статистичній вибірці);
m – число незалежних (пояснюючих) змінних моделі ;
k = m + 1 – число параметрів моделі.
Найпростішою серед   лінійних  економетричних моделей є модель парної лінійної регресії (або проста лінійна модель), яка описує зв’язок всього між двома економічними змінними - показниками.
Економетричною моделлю парної лінійної регресії (простою лінійною моделлю) називається  регресійна модель, яка описує лінійний зв’язок між двома економічними показниками, один з яких є залежною (пояснюваною), а другий – незалежною (пояснюючою) змінною.
Виходячи з вищерозглянутих позначень для простої лінійної регресії маємо:
  • теоретичну (“канонічну”) модель парної лінійної регресії
  • вибіркову (емпіричну) модель парної лінійної регресії
  • вибіркову функцію парної лінійної регресії
Рівняння (2.7) представляє собою параметричне рівняння прямої, тому на площині x0y вибірковій функції парної лінійної регресії відповідає вибіркова (емпірична ) пряма регресії. Графічно вибіркова функція регресії і пряма регресії для деякої вибірки представлені на рис. 2.1. 
 
Рис. 2.1 -  Парна лінійна регресія
Параметри моделі парної лінійної регресії мають спеціальну назву. Параметр b0 називається перетином, а b1 – нахилом. Математична інтерпретація цих параметрів зрозуміла з наведеного рисунку. 
Для побудови загальної лінійної моделі використовують статистичну інформацію щодо діяльності підприємства і здійснюють такі етапи: математико-статистичний аналіз, побудову лінійної регресійної моделі, перевірку побудованої моделі на адекватність, аналіз отриманих результатів.
 На етапі математико-статистичного аналізу проводять перевірку основних припущень класичного регресійного аналізу, крім того, здійснють найважливішу процедуру багатофакторного аналізу – перевірку факторів на мультиколінеарність. Термін “мультиколінеарність” означає, що в багатофакторній регресійній моделі дві або більше незалежних змінних (факторів) пов’язані між  собою лінійною залежністю або, іншими словами, мають високий ступінь кореляції (rxixj  1, i  j).
Для здійснення математико-статистичного аналізу будують матрицю коефіцієнтів парної кореляції. Потім аналізують коефіцієнти парної кореляції між факторами. Результатом етапу математико-статистичного аналізу є знаходження множини основних незалежних між собою факторів, що  є базою для  побудови   регресійної  моделі. 
На другому етапі для побудови лінійної моделі широке використання отримали «покроковий»  метод і метод “виключень”.   Сутність   «покрокового»   методу полягає  в тому, що фактори по черзі включаються в модель доти, доки вона не стане задовільною. Порядок включення вибирають за допомогою коефіцієнта кореляції  як  міри важливості факторів (незалежних змінних), які ще не  включені в модель. Цей  метод передбачає  розрахунок  часткових  F-критеріїв   для  факторів,  що здійснювали   значний   вплив  на   результативний показник. Далі визначають показники, які здійснювали найбільший вплив на результативний показник і значення часткових F-критеріїв перевищують нормативні значення. 
Метод “виключень” полягає в тому, що вибирається низка факторів, які ймовірно можуть впливати на результативний показник. Потім, почерзі виключаються ті фактори, в яких найменший коефіцієнт кореляції (згідно з матрицею статистики), а значення часткових F-критеріїв не перевищують нормативні значення. Таким чином, залишаться лише ті змінні, які відповідають розглянутим вище умовам.
На наступному етапі аналізу  перевіряється адекватність моделі з використанням F-критерію Фішера і t-критерію Стьюдента. Статистична оцінка надійності коефіцієнта регресії здійснюється за допомогою t-критерію Стьюдента. Він застосовується для оцінки тісноти зв'язку між незалежною змінною x  і залежною у. При використанні цього критерію формулюється нульова гіпотеза.  Потім отримане значення t-розподілу Стьюдента порівнюється з критичним. Якщо фактичне значення t-розподілу Стьюдента перевищує критичне, то спростовується нульова гіпотеза й зв'язок між змінними х і у вважається щільним. Якщо ні, то приймається нульова гіпотеза, а фактори моделі вважаються статистично неадекватними і виключаються з моделі при встановленому рівні значущості в 5% і 1%.
F-тест використовується для оцінки того, чи важливе пояснення, яке дає рівняння в цілому. Якщо фактичне значення F-критерію вище
Фото Капча