Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Загальна теорія поглинання світла молекулами

Предмет: 
Тип роботи: 
Реферат
К-сть сторінок: 
40
Мова: 
Українська
Оцінка: 

justify;">n - показник заломлення призми.

Матеріал, з якого виготовляються призми, вибирається з розрахунком отримання максимальної дисперсії і хорошою пропускною здатністю в певній області спектра. Призми зі скла використовуються у видимій області, з кварцу - в ультрафіолетовій і ближній інфрачервоній області. Призми в порівнянні з дифракційними решітками забезпечують чистіший спектр.
Дифракційні гратки дешевші, ніж призми, і можуть бути використані для всіх областей спектра, так як пропускна здатність в даному випадку не має визначального значення. Дифракційна решітка складається з великої кількості паралельних ліній, нанесених на скло або на поверхню металу. Спектри, одержувані з дифракційними решітками, не так чисті, як призмові, тому, що утворюється спектр більш ніж одного «порядку».
Коли світло відбивається від дифракційної поверхні, спектри утворюються на обох сторонах перпендикуляра у відповідності з наступним рівнянням:
n * λ = d * (sin i + sin Θ),
де n - порядок спектра;
λ - довжина хвилі; 
d - відстань між лініями дифракційної решітки;
i - кут падіння;
Θ - кут дифракції.
Дисперсія від дифракції залишається практично постійною при зміні довжини хвилі, а роздільна сила решітки визначається порядком спектра і числом ліній на освітленій частині дифракційної решітки.
R = n * N,
де R - роздільна сила решітки;
n - порядок спектра;
N - число ліній.
Роздільна сила також залежить від якості дифракційної решітки. Будь-які недоліки в точності нанесення ліній можуть привести до появи кілька зміщеного зображення ліній. Зазвичай отримують спектр дещо вищого порядку, ніж очікуваний.Для обох систем диспергування світла необхідні колімінуючі та фокусуючі лінзи або дзеркала, зазвичай комбіновані з диспергуючим пристроєм.У абсорбційній спектроскопії застосовуються кювети різних розмірів, виготовлені з кварцу або скла. Як і призми, кювети зроблені з матеріалу, що володіє високою пропускною здатністю в певної частини спектра. Кварцові кювети придатні для вимірювань як ультрафіолетової, так і у видимій області; скляні ж можуть бути використані тільки у видимій області.
Товщина шару в кюветах коливається від 0,1 до 10 см. Найчастіше вимірювання проводять в кюветах з товщиною шару 1 см. Важко робити кювети, абсолютно ідентичні за пропускною здатністю, тому одну і ту ж кювету зазвичай використовують тільки для розчинника. Поправка на різне поглинання кювет визначається шляхом порівняння поглинання обох кювет, наповнених чистим розчинником.Слід звертати увагу на чистоту кювет та стан їх оптичної поверхні, так як обидва ці чинники впливають на показання поглинання.Для вимірювання поглинання світла необхідно фотометричний пристрій. Застосовувані для цих цілей фотоелементи, фотоемісійні лампи і фотопомножувачі засновані на відомому ефекті переходу світлової енергії в електричну.Фотоелементи дають відносно сильний струм, який може бути визначений за допомогою гальванометра. Фотоелементи найчастіше застосовуються в фотоелектроколориметр.
Фотоемісійні лампи - це розріджені трубки, що містять два електроди, один з яких при опроміненні випускає електрони, так як покритий світлочутливим матеріалом (лужний метал, нанесений на шар окису срібла або сурми). Виникає при цьому струм дуже слабкий, тому необхідно застосовувати підсилювальні пристрої.
Емісійні лампи застосовують по наступних основних причинах. Внаслідок низького внутрішнього опору посилення струму в фотоелементі утруднено. В спектрофотометрі використовується більш вузький промінь світла, ніж у колориметрі, завдяки чому струм у фотоелементі був би занадто слабкий для вимірювання. Потік фотоелемента, який піддається постійному висвітленню, повільно знижується в часі. Нарешті, спектральна відповідь фотоелементів обмежується видимою частиною спектра, фотоелементи майже марні в ультрафіолетовій області.Природа покриття визначає область хвиль, в якій емісійна лампа може бути використана (від 300 до 500 нм для шару металевого натрію і від 200 до 700 нм для шару калію).Фотопомножувачі пристроїв є подальшим розвитком фотоемісійних ламп. Первинні електрони, що випускаються фоточутливим електродом, спрямовуються на наступний електрод, який в свою чергу випускає кілька електронів на кожен падаючий на нього електрон і т. д. Після низки таких етапів вдається значно посилити струм при збереженні дуже невеликої величини початкового струму.
 
3. Методика спектрофотометричних вимірювань
 
Існує два типи спектрофотометрів: однопроменеві і двопроменеві. У однопроменевий приладі промінь світла, що виходить з монохроматора, проходить через одну кювету і потім потрапляє в детектор. Визначення поглинання роблять у такий спосіб. Спочатку прилад встановлюють на нуль проникання(нескінченна величина поглинання) з детектором в темряві, що робиться для компенсації слабкого струму, який є навіть за відсутності випромінювання і виникає внаслідок емісії теплових електронів. Потім в промінь поміщають кювету, що містить розчинник, і прилад встановлюється для вимірювання в одиницях проникнення (нуль поглинання) при певній довжині хвилі. Після чого, кювету з розчинником замінюють кюветою з розчином досліджуваної речовини і виробляють вимір.За цією методикою вимірюють два фотоструми - один пропорційний інтенсивності променя, що пройшов через розчинник, і другий - пропорційний інтенсивності променя, що пройшов через розчин речовини. Щоб співвідношення цих струмів були еквівалентні проникності, треба джерело випромінювання і детектор залишати постійними в межах, коли проникність встановлена на одиницю і коли проникність зменшується при вимірюванні поглинання речовини. Отже, особливу увагу необхідно звертати на постійну напругу, що подається на лампу.У двохпроменевій спектрофотометрії ця проблема вирішена наступним чином. Випромінювання, що виходить з монохроматора, розділяється на два промені, що мають однакові інтенсивності і спектральні
Фото Капча