Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Загальна фізика. Частина 2. Магнетизм. Коливання і хвилі. Оптика. Елементи атомної фізики, квантової механіки і фізики твердого тіла. Фізика ядра та елементарних часток

Предмет: 
Тип роботи: 
Курс лекцій
К-сть сторінок: 
111
Мова: 
Українська
Оцінка: 

геометрична тінь. 

Таким чином, закони геометричної оптики можна застосовувати у тих випадках, коли розміри перешкод і отворів великі порівняно з довжиною хвилі світла. 
 
§ 6.6. Дифракція Фраунгофера
Дифракцією Фраунгофера називається дифракція плоских хвиль (паралельних променів). Дифракція Фраунгофера має більше практичне значення, ніж дифракція Френеля (дифракція сферичних хвиль).
Розглянемо довгу прямокутну щілину BС шириною a, на яку нормально падає паралельний пучок монохроматичного світла (рис.6.15). Згідно з принципом Гюйгенса-Френеля, точки щілини є когерентними вторинними джерелами, що коливаються в одній фазі (площина щілини співпадає з фронтом хвилі).
За допомогою лінзи Л на екрані Е спостерігається дифракційна картина, яка являє собою систему максимумів і мінімумів. Знайдемо умови спостереження максимумів і мінімумів. Для цього розіб’ємо фронт хвилі ВС на зони Френеля таким чином, щоб оптична різниця ходу від країв сусідніх зон у певному напрямку поширення дифрагованої хвилі під кутом дифракції  складала половину довжини хвилі  . З рис.6.15 видно, що ширина зони Френеля дорівнює  . Якщо число зон парне, то
  (6.31)
і під кутом  спостерігається дифракційний мінімум. Коливання від відповідних точок сусідніх зон у точці спостереження відбуваються у протифазі, тому випромінювання від сусідніх зон в цілому взаємно компенсуються.
Якщо число зон непарне, то
  (6.32)
то спостерігається дифракційний максимум, який відповідає дії однієї нескомпенсованої зони Френеля. Величина m називається порядком дифракційного максимуму (мінімуму).
Амплітуда хвилі в точці спостереження одержується на основі принципу Гюйгенса-Френеля:
  (6.33)
де  – амплітуда в центрі дифракційної картини при  .
Розподіл інтенсивностей  :
  (6.34)
Цей розподіл показаний на рис. 6.16.
Перейдемо до дифракції на одномірній дифракційній решітці, яка являє собою систему N однакових паралельних щілин шириною а, розміщених на однакових відстанях b. Величина d = a + b називається періодом решітки. Сучасна дифракційна решітка має 1200 і більше щілин (штрихів) на 1 мм.
Дифракційна картина після решітки складніша порівняно з картиною від однієї щілини. Це зумовлене тим, що відбувається інтерференція хвиль, які йдуть від різних щілин решітки, тому має місце підсилення максимумів і їх звуження. 
Якщо світло падає нормально на решітку, то виконуються такі умови:
 
для головних максимумів: (6.35)
для головних мінімумів: (6.36)
для додаткових мінімумів: (6.37)
(k–довільні цілі додатні числа, крім 0, N, 2N, 3N, …).
Розподіл інтенсивності на екрані спостереження:
  (6.38)
де  –інтенсивність в напрямку   для однієї щілини. В головних максимумах інтенсивність світла в   разів більша від інтенсивності відповідних максимумів дифракційної картини від однієї щілини. При великому значенні N вторинні максимуми майже непомітні на екрані, їх інтенсивність не більша 5% від інтенсивності головного максимуму.
На рис.6.17 показана дифракційна картина після дифракційної решітки в білому   світлі (вторинні максимуми не зображені). З умови головних максимумів випливає, що для всіх порядків, крім m = 0, біле світло розкладається в спектр. Тому дифракційна решітка використовується як диспергуючий елемент в спектрометрах.
Важливою характеристикою оптичних приладів є їхня роздільна здатність. Згідно з критерієм Релея, зображення двох близьких точок можна вважати розділеними, якщо центральний дифракційний максимум від однієї точки співпадає з першим дифракційним мінімумом для другої точки.
Для круглого отвору роздільна здатність
  (6.39)
де D – діаметр отвору,  – довжина хвилі світла.
Мірою роздільної здатності дифракційної решітки (спектрального приладу) прийнято вважати відношення довжини хвилі , біля якої виконується вимірювання, до мінімального розділеного інтервалу , тобто   Користуючись критерієм Релея, можна показати, що 
  (6.40)
де m – порядок спектру, N – кількість щілин дифракційної решітки.
 
§ 6.7. Дифракція рентгенівських променів
Відстань між атомами в кристалі (10-10 м) співмірна з довжиною хвилі рентгенівського випромінювання, тому кристалічна решітка може служити просторовою дифракційною решіткою для рентгенівських променів. Якщо на кристал спрямувати потік рентгенівського випромінювання від рентгенівської трубки з неперервним спектром, то для даного кристалу знайдуться промені з такою довжиною хвилі , що умови дифракції будуть виконуватись.
Розрахунок дифракційної картини від кристалічної решітки можна провести наступним простим способом. Проведемо через вузли кристалічної решітки паралельні рівновіддалені площини (атомні площини). Якщо падаюча на кристал хвиля – плоска, то і огинаюча вторинних хвиль, які породжені атомами даного атомного шару, також буде площиною. Плоскі вторинні хвилі, відбиті від різних атомних площин, – когерентні і будуть давати інтерференційну картину. При цьому, як і у випадку дифракційної решітки, вторинні хвилі будуть практично гасити одна одну у всіх напрямках, крім тих, для яких різниця ходу між сусідніми хвилями буде кратною .
З рис. 6.18 видно, що різниця ходу для хвиль, які відбились від сусідніх атомних площин, дорівнює 2dsin, де d – період кристалічної решітки,  – кут ковзання падаючих променів. Напрямки, в яких спостерігаються дифракційні максимуми, визначаються умовою Вульфа-Брега 
 . (6.41)
Наявність багатьох атомних площин призводить лише до того, що максимуми інтенсивностей стають більш гострими, як і при збільшенні числа щілин дифракційної решітки.
Дифракція рентгенівських променів від кристалів має два основних
Фото Капча