нього, коли Е < U0. Проникнути під бар’єр класична частинка не може, бо тоді її кінетична енергія була б меншою від нуля. Розв’язок рівняння Шредінгера для квантомеханічної мікрочастинки дає, що хвильові функції в усіх трьох областях відмінні від нуля, тобто мікрочастинка проникає під бар’єр і за бар’єр. Це явище називається тунелюванням. Від’ємні значення кінетичної енергії мікрочастинки в момент проходження бар’єру не можуть турбувати, бо в квантовій механіці кінетична енергія , як і потенціальна енергія, не є точно визначеними. Прозорість бар’єру, тобто імовірність тунелювання частинки, знаходиться як відношення густин імовірності в областях ІІІ та І. Розрахунок дає
Пошук
Загальна фізика. Частина 2. Магнетизм. Коливання і хвилі. Оптика. Елементи атомної фізики, квантової механіки і фізики твердого тіла. Фізика ядра та елементарних часток
Предмет:
Тип роботи:
Курс лекцій
К-сть сторінок:
111
Мова:
Українська
. (7.40)
Звідси видно , що бар’єр тим прозоріший, чим менші його ширина і висота. Для класичної частинки (m ) і макробар’єру (l ) прозорість бар’єру зникаюче мала.
§ 7.5. Квантовий лінійний гармонічний осцилятор
7.5.1. Лінійний гармонічний осцилятор – це матеріальна точка, яка здійснює одновимірний (вздовж осі х) рух під дією квазіпружної сили . Потенціальна енергія осцилятора (рис. 7.8)
, (7.41)
де m – маса осцилятора, – його власна циклічна частота, х – зміщення від положення рівноваги. Отже, мова піде про мікрочастинку, яка перебуває в потенціальній ямі з параболічними стінками. Підставляючи (7.41) в рівняння Шредінгера (7.30), отримаємо
. (7.42)
Власні хвильові функції, тобто розв’язки цього рівняння, які задовольняють стандартні вимоги (§ 7.3), мають вигляд
, (7.43)
де , – поліноми Чебишева-Ерміта -го порядку, – коливальне квантове число.
Для класичного осцилятора зміщення х обмежене амплітудою коливань ; для квантового осцилятора таке обмеження знімається за рахунок можливості тунелювати через стінки потенціальної ями. А це означає, що існує ненульова імовірність знайти мікрочастинку поза ямою.
Власні значення оператора Гамільтона для квантового осцилятора
. (7.44)
Тут враховано, що . Отже, енергія квантового осцилятора приймає дискретні значення , тобто квантується (рис. 7.8). Найменша енергія квантового осцилятора, так звана нульова енергія, на відміну від класичного осцилятора, не дорівнює нулю. Наявність нульових коливань підтверджується експериментально в дослідах по розсіюванню світла в кристалах при дуже низьких температурах, коли з точки зору класичної фізики коливальний рух кристалічної гратки повинен би припинитися.
Перебуваючи в стаціонарному стані, квантовий осцилятор не поглинає і не випромінює енергії. Випромінювання (поглинання) світла відбувається при переході осцилятора між стаціонарними станами, при цьому квантова механіка дозволяє лише переходи між сусідніми енергетичними рівнями, тобто (правило відбору). Енергія випромінюваного (поглинутого) кванту , що підтверджує квантовий постулат Планка.
§ 7.6. Воднеподібні атоми в квантовій механіці. Квантові числа
7.6.1. З врахуванням виразу (7.3) для потенціальної енергії електрона в кулонівському полі ядра воднеподібного атома, стаціонарне рівняння Шредінгера набуде вигляду
. (7.45)
Оскільки кулонівське поле володіє центральною симетрією, то зручно перейти до сферичних координат (рис. 7.9), де положення довільної точки А описується трьома координатами . В цьому випадку рівняння Шредінгера набуває вигляду, складнішого від (7.45), але з’являється можливість представити хвильову функцію як добуток радіальної функції R(r) і кутової , тобто провести розділення змінних:
. (7.46)
Стандартні вимоги як до хвильової функції в цілому, так і до окремих складових забезпечуються лише при певних, дискретних значеннях не тільки енергії електрона, але і квадрату моменту імпульсу його орбітального руху , а також проекції цього моменту на вибраний напрямок (вісь z). Квантування вказаних характеристик визначається трьома квантовими числами: головним n, орбітальним (азімутальним) та магнітним наступним чином:
, (7.47)
де n=1,2,3,…, тобто співпадає з (7.8) для борівського воднеподібного атома;
, (7.48)
де = 0,1,2,…, (n-1);
, (7.49)
де .
Магнітне квантове число вказує на просторове квантування моменту імпульсу електрона: вектор моменту імпульсу електрона може мати лише такі орієнтації в просторі, що його проекції на вибрану вісь z (яка задається, як правило, напрямком магнітного поля) кратні (рис. 7.10).
Оскільки енергія електрона Еn визначається лише головним квантовим числом n, а хвильова функція – усіма квантовими числами, то декільком станам з різними та відповідає одне значення енергії. Така ситуація називається квантовомеханічним виродженням. Наприклад, енергія Е2 реалізується в чотирьох станах з хвильовими функціями . В загальному, кратність виродження дорівнює n2. Для ілюстрації приведемо вирази для радіальних і кутових функцій в декількох станах:
(7.50)
де – борівський радіус.
Для основного стану (n = 1) хвильова функція має вигляд
. (7.51)
Імовірність знайти електрон в сферичному шарі товщиною dr, тобто в елементарному об’ємі , становить
а в шарі одиничної товщини –
. (7.52)
Як видно з рис. 7.11, залежність володіє різким максимумом при r = а0. Отже, борівська орбіта в квантовій механіці може інтерпретуватись як геометричне місце точок, де імовірність перебування електрона – максимальна. Але, оскільки заряд електрона “розмазаний” по усьому атомі , то в квантовій механіці, у відповідності зі співвідношенням невизначеностей Гейзенберга, поняття орбіти (траєкторії) електрона втрачає зміст.
7.6.2. Стани електрона