Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Загальна фізика. Частина 2. Магнетизм. Коливання і хвилі. Оптика. Елементи атомної фізики, квантової механіки і фізики твердого тіла. Фізика ядра та елементарних часток

Предмет: 
Тип роботи: 
Курс лекцій
К-сть сторінок: 
111
Мова: 
Українська
Оцінка: 

атому в молекулі зазнає розщеплення (рис. 7.17, а). При цьому кожному з розв’язків (7.64) відповідає свій просторовий розподіл густини електронного заряду (рис. 7.17, б).

Оскільки за рахунок коливального руху атомів відстань між ними (R) змінюється, то слід очікувати залежність електронної енергії від R (рис. 7.18). Важливо відмітити, що стан з енергією Е– реалізується при паралельній (↑↑) орієнтації спінів електронів, а стан з енергією Е+ - при антипаралельній (↑↓) орієнтації спінів. Зрозуміло, що тільки залежність Е(R) з мінімумом відповідає стійкому стану молекули. Зв’язок в молекулах, який забезпечується антипаралельними (спареними) спінами електронів називають ковалентним або гомеополярним. 
7.10.2. Розглядаючи двохатомну молекулу як квантовий лінійний гармонічний осцилятор (§ 7.5), енергію коливального руху молекули запишемо як
 , (7.65)
де   = 0,1,2, … – коливальне квантове число.
Кожний електронний рівень (електронна кофігурація) має свою сукупність коливальних рівнів (рис. 7.19). Формула (7.65) справедлива лише при малих значеннях  , коли крива Е(R) близька до параболи. При великих інтенсивностях коливального руху (великих  ) потрібно врахувати відхилення від гармонічності (ангармонізм), і енергія коливального руху молекули запишеться як
 ,
де γ – коефіцієнт ангармонічності. Зрозуміло, що в цьому випадку коливальні енергетичні рівні вже не є еквідистантними, а згущуються.
7.10.3. Енергія обертального руху двохатомної молекули
  (7.66)
де I – момент інерції молекули відносно осі обертання, що перпендикулярна до лінії, яка сполучає атоми, і проходить через центр молекули;   - кутова швидкість обертання молекули;   – момент імпульсу молекули. Останній квантується так, як і орбітальний момент імпульсу електрона в атомі (7.48), тобто
  (7.67)
де J  =  0,1,2,3, … – обертальне квантове число.
Підставивши (7.67) у (7.66), отримаємо
 . (7.68)
Момент інерції молекули розраховується як
 ,
де   – зведена маса молекули, атоми якої мають маси m1 та m2 ; d – відстань між центрами атомів.
7.10.4. Підставляючи у (7.63) вирази (7.65) і (7.68), отримаємо повну енергію молекули (в гармонічному наближенні):
 . (7.69)
При цьому між енергіями різних форм руху молекули мають місце наступні нерівності:  . Енергетична діаграма, які відповідає виразу (7.69), для двох електронних конфігурацій представлена на рис. 7.20. Видно, що для відстаней між енергетичними рівнями різних форм руху також мають місце нерівності:  . Якщо певним (тепловим, оптичним тощо) чином перевести молекулу в збуджений стан, то при переході на нижчі рівні будуть випромінюватись кванти світла різної енергії. Але, як правило, досліджуються не спектри випромінювання, а спектри поглинання. Зумовлено це тим, що при помірних температурах молекули перебувають переважно у найнижчих електронних і коливальних станах. І тому спектри випромінювання мають мало ліній слабкої інтенсивності. Зрозуміло, що такі обмеження не поширюються на спектри поглинання, які формуються при переході з нижчих на вищі рівні під дією світла.
Розрізняють наступні типи спектрів поглинання молекул: обертальні (І), коливально-обертальні (ІІ) і електронно-коливально-обертальні (ІІІ) (рис. 7.20). Обертальні спектри виникають при переходах між обертальними рівнями молекули однієї електронно-коливальної конфігурації; при цьому виконуються правила відбору  . Енергія поглинутих фотонів
  (7.70)
а їх частота  .
Остання формула дозволяє за експериментальними значеннями частот (довжин хвиль) обертального спектру визначати момент інерції молекул. Відмітимо, що обертальні спектри лежать у далекій інфрачервоній області ( = 10-410-3 м), на межі з ультрарадіо-діапазону.
Коливально-обертальні спектри формуються при переходах між обертальними рівнями молекули в різних коливальних конфігураціях, але однієї електронної конфігурації; при цьому виконуються наступні правила відбору:  = 1, J = 1. Енергія поглинутих фотонів (для малих , коли справедлива формула(7.65))
  (7.71)
а частота  .
Такий спектр являє собою смугу близьких ліній, розміщених симетрично відносно уявної v0 лінії, яка не реалізується. Зрозуміло, що остання формула дозволяє встановити як момент інерції молекули, так і частоту її власних коливань. Коливально-обертальні смуги лежать в середній ІЧ-області (  10-5 м).
Електронно-коливально-обертальні спектри поглинання формуються при переходах між обертальними рівнями молекули в різних електронних конфігураціях; при цьому виконуються правила відбору:  = 1, J = 0, 1. Отже, кожній парі електронних рівнів відповідає група смуг коливально-обертального спектру. Ці смуги лежать як у близькій ІЧ-області, так і у видимій області (  10-6 м).
 
§ 7.11. Люмінесценція
 
З точки зору квантової механіки випромінювання тіл зумовлене переходами атомів (молекул, кристалу) із збудженого стану в основний чи нижчий енергетичний стан. Характер випромінювання визначається способом переведення атомів (молекул, кристалу) в збуджений стан. Якщо збудження здійснюється тепловим шляхом, тобто нагріванням тіл, то випромінювання називається тепловим (рівноважним, температурним). Усі інші види збуджень супроводжуються випромінюванням, яке називається люмінесценцією. За С. Вавіловим, люмінесценція – це оптичне випромінювання тіла, що є надлишковим над тепловим при цій же температурі в даному спектральному діапазоні; при цьому тривалість свічення  перевищує 10-10 с, тобто не припиняється зразу ж після вимкнення збудження. Розрізняють два види люмінесценції: флуоресценцію, коли  = 10-9  10-8 с, і фосфоресценцію, коли  > 10 -8 с.
Крім того, залежно від способу збудження, розрізняють такі види люмінесценції:
 фотолюмінесценція, що
Фото Капча