Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Загальна фізика. Частина 2. Магнетизм. Коливання і хвилі. Оптика. Елементи атомної фізики, квантової механіки і фізики твердого тіла. Фізика ядра та елементарних часток

Предмет: 
Тип роботи: 
Курс лекцій
К-сть сторінок: 
111
Мова: 
Українська
Оцінка: 

кількості нормальних коливань, частоти яких лежать в межах від  до +d, в одному молі речовини

 . (7.85)
Поява максимальної частоти   зумовлена тим, що загальна кількість нормальних коливань повинна дорівнювати кількості ступенів вільності коливного руху атомів моля кристалу, тобто
 
Розглядаючи кожне нормальне коливання як квантовий лінійний осцилятор, для внутрішньої енергії одного моля кристалу отримаємо
 ,
а після підстановки формул (7.81) та (7.85) і математичних перетворень
 . (7.86)
Ввівши підстановку  , отримаємо вираз для молярної теплоємності кристалу
  (7.87)
За аналогією з попереднім введемо характеристичну температуру Дебая Д, використавши співвідношення  ; звідси
 .
Оскільки  , то (7.87) після інтегрування набуде вигляду
 .
При високих температурах (Т >> Д), коли x0, використавши наближення  , отримаємо  , тобто закон Дюлонга-Пті. При низьких температурах (Т << Д), коли xmax, отримаємо “закон кубів Дебая”
 , (7.88)
який кількісно узгоджується з експериментом (рис.7.25).
В рамках концепції корпускулярно-хвильового дуалізму речовини зміну енергії коливного руху кристалічної гратки можна описати  процесами випромінювання чи поглинання особливої квазічастинки – фонона, яка володіє нульовим спіном і тому належить до класу бозонів (§7.7) .
 
§ 7.14. Елементи зонної теорії твердих тіл
 
7.14.1. При утворенні кристалічної гратки твердих тіл, тобто при зближенні окремих атомів до відстані  , атомні енергетичні рівні повинні розщеплюватись в зони рівнів, оскільки принцип Паулі тепер стосується не окремих атомів, а кристалічної гратки в цілому. Розщеплення тим сильніше, чим менша відстань між атомами і чим вищий енергетичний рівень (рис. 7.26 а). Таким чином, шкала енергій електронів в кристалічній гратці розбивається  на зони дозволених енергій і зони заборонених енергій (на рис. 7.26 б заштриховані зони дозволених енергій, які відповідають рівноважній відстані між атомами R0).
Кількість енергетичних рівнів в зонах співмірна з кількістю атомів речовини, тобто  . Оскільки ширина зон  , то відстань між окремими рівнями  , що значно менше від енергії теплового руху k0Т. І тому можна вважати розподіл енергій в зонах неперервним.
У відповідності з принципом Паулі на кожному енергетичному рівні в зонах може перебувати не більше двох електронів з протилежними спінами. Якщо зона утворена з повністю заповненого електронами атомного рівня, то всі рівні такої зони також повністю заповнені. Зрозуміло, що це стосується зон, утворених з глибоких атомних рівнів. Електрони таких зон не можуть брати участь в електричних і теплових явищах, бо ні енергія електричного поля, ні теплова енергія не є достатніми для переводу електрона в сусідню вищу зону, а переходи в межах заповненої зони неможливі.
Інша ситуація в зонах, утворених з частково заповнених рівнів, тобто рівнів валентних електронів. Зрозуміло, що такі зони будуть  заповнені також частково. Для прикладу розглянемо зону, утворену з атомного s-рівня, на якому перебуває лише один (валентний) електрон (Li, Na, K тощо). Якщо кристалічна гратка утворена з N атомів, то вказана зона має N рівнів, на яких може розміститись 2N електронів. Оскільки валентних електронів лише N, то заповниться лише половина зони (рис. 7.27 а). А це означає, що під впливом зовнішнього збудження (тепло, електричне поле) електрони можуть вільно переходити на вищі рівні в межах однієї зони, тим самим збільшувати свою енергію, тобто прискорюватися. Отже, електрони в частково заповненій зоні є носіями струму. І тому така зона, яку ми назвемо валентною, є одночасно зоною провідності. В залежності від характеру заповнення валентної зони всі тверді тіла поділяються на метали, з одного боку (рис. 7.27 а), і напівпровідники та діелектрики, з іншого (рис. 7.27 б). В металах валентна зона (V-зона) заповнена частково, всі вищі зони порожні, всі нижчі зони заповнені повністю. В напівпровідниках і діелектриках V-зона заповнена повністю (при Т = 0) і тому не може бути зоною провідності. Наступна вища зона при Т = 0 повністю порожня. Ця зона називається зоною провідності (С-зоною), бо при певних умовах (Т  0) в ній можуть з’явитися електрони, які будуть носіями струму. Енергетична відстань між дном С-зони (Ес) і стелею V-зони (Еv) називається забороненою зоною Еg = Ec – Ev. Якщо Еg < 2,5eB, то речовина – напівпровідник, якщо Еg > 2,5eB, то – діелектрик. 
Появу носіїв струму в напівпровідниках пояснимо, використавши плоску модель кристалічної гратки атомного напівпровідника, наприклад, Ge (рис.7.28). Такий напівпровідник має тетраедричну кристалічну структуру, при якій кожен атом оточений чотирма сусідами. Зв’язок між сусідніми атомами забезпечується двома валентними електронами з протилежними спінами. При Т = 0 всі валентні електрони перебувають на зв’язках, “зайвих” електронів немає, що відповідає повністю заповненій валентній зоні і порожній зоні провідності.
При нагріванні кристалу деякі електрони за рахунок енергії теплового руху можуть вийти із зв’язків, стати вільними і в електричному полі напруженістю   набути швидкості напрямленого руху  . На звільнене вакантне місце може перейти електрон із сусіднього зв’язку, що рівнозначне рухові дірки (hole) в протилежному напрямку зі швидкістю  . Оскільки дірка рухається за полем (електрон – проти поля), то дірку слід розглядати як позитивний заряд +е. На енергетичній діаграмі теплова генерація вільних електронів і дірок
Фото Капча