Предмет:
Тип роботи:
Контрольна робота
К-сть сторінок:
69
Мова:
Українська
за формулами
для 1-ої групи
для 2-ої групи
для k-ої групи
де , - відповідно початкове та кінцеве значення абсциси х (результатів вимірів).
Для кожної групи підраховують частоту результатів Vi, які попадають в граничні значення і , і статистичну ймовірність за формулою
,
причому V1 + V2 + ...+ Уk = n; р1 + р2+... + рk = 1.
За допомогою статистичної таблиці або статистичної сукупності можна побудувати статистичну функцію розподілу випадкової величини X.
3. Оцінювання параметрів закону розподілу
Відомо, що випадкова величина X характеризується законом розподілу, що має деякі невідомі параметри a(a1, a2, …, аk). Якщо в результаті виконаного експерименту нами отримано статистичний ряд Х1, Х2, ..., Х3 то очевидно можна знайти надійну оцінку параметра а.
Припустимо, що на основі обробки статистичного ряду отримано параметра, який буде оцінкою невідомого параметра . Разом з тим, він буде функцією від випадкових величин Х1, Х2, ..., Х3 тобто
Таким чином і обчислений параметр а буде випадковою величиною, закон розподілу якого залежить від закону розподілу випадкової величини X і від числа експериментів n. При цьому оцінка а буде мати практичну цінність, якщо володіє властивостями:
1 . Незміщеності. При цьому повинна виконуватися умова
де а - істинне значення параметра.
2. Обгрунтованості. Тобто за ймовірністю вона зводиться до оцінюваного параметра при нескінченному збільшенні кількості дослідів, тобто
де - як завгодно мале позитивне число.
3. Ефективності. Це означає, що дисперсія оцінки а повинна бути мінімальною, тобто
При цьому буде мінімальна ймовірність появи грубої помилки при визначенні наближеного значення невідомого параметра.
Таким чином при розробці методів обробки статистичних даних для визначення оцінок наближених значень невідомих параметрів треба виходити з їх властивостей. Оцінки параметрів закону розподілу, що відповідають всім трьом властивостям називають доброякісними.
Практично розроблено три способи визначення оцінок: метод моментів; метод максимальної правдоподібності (ММП); метод найменших квадратів (МНК).
В методі моментів значення теоретичних моментів заміняють значеннями емпіричних моментів, які обчислюють за результатами статистичних рядів чи статистичної сукупності.
В методі максимальної правдоподібності (ММП), розробленого Р. Фішером розглядають значення випадкових величин Х1, Х2, ..., Х3, що отримані при проведенні дослідів і використовують їх для визначення невідомого параметра а. Якщо щільність розподілу (х, а) залежить від параметра а, то в ММП задаються правдоподібною функцією, виходячи з того, що всі Х1 незалежні
Сутність ММП полягає в тому, що за якісну оцінку параметра а беруть таке значення аргументу, яке приводить функцію L до максимуму. Рівняння розв'язують за умови
При цьому вибирають таке визначення а, яке зводить функцію Ь до максимуму. Для спрощення функцію правдоподібності заміняють логарифмом, тоді
РОЗДІЛ 5. СТАТИСТИЧНА ПЕРЕВІРКА ГІПОТЕЗ
1. Статистичні дослідження рядів вимірів
Навколишнє середовище, явища природи, закони фізики та інших наук вивчають шляхом випробувань, в результаті яких отримують випадкові величини або статистичний ряд x1, x2, …, xn. Одночасно може досліджуватися декілька явищ. При цьому отримують декілька статистичних рядів або сукупностей випадкових величин.
Залежно від процесів, що відбуваються при випробуваннях, кожен статистичний ряд підпорядковується тому чи іншому закону розподілу. Його можна визначити шляхом математичної обробки вимірів.
Для отримання надійних результатів і обгрунтованих рішень при математичній обробці результатів експериментів необхідно знати закони розподілу статистичних рядів. Знання закону розподілу необхідно і для застосування методів обробки вимірів.
Всяке передбачення про закон розподілу випадкових величин називають статистичною гіпотезою.
Статистична перевірка гіпотез полягає у визначенні закону розподілу результатів експериментів. Висунуту гіпотезу називають нульовою гіпотезою.
В результаті статистичної перевірки для нульової гіпотези визначають статистику Q. Перевірка нульової гіпотези базується на теорії надійних інтервалів та способах перевірки статистичних гіпотез.
За принципом практичної впевненості для висунутої нульової гіпотези визначають теоретичне значення статистики Qq. Його визначають за таблицями різних критеріїв перевірки по заданій імовірності p або рівнях значимості q = 1 - р. В разі, коли нульова гіпотеза приймається. В протилежному випадку вона не підтверджується, тобто відкидається.
Статистична перевірка може виконуватися одним і більше критеріями (методами). При цьому може виникнути дві помилки:
1. Бракування правильної гіпотези. Уникнути її можна підвищенням значення ймовірності р або зниженням рівня значності q.
2. Прийняття неправильної гіпотези. Уникнути її можна застосуванням різних критеріїв перевірки.
Ймовірність прийняття нульової гіпотези підвищується зі збільшенням кількості випробувань і практично надійна, коли . Надійність перевірки статистичної гіпотези висока при достатньо великій імовірності бракування неправильної гіпотези. Важливе значення має і вибір критерію перевірки.
При математичній обробці геодезичних вимірів найбільш поширені такі перевірки статистичних гіпотез:
1. Визначення систематичної (або постійної) похибки
Залежність від умов експерименту може виконуватися такими способами:
а) систематичні похибки значно спотворюють результат і можуть призвести до недоброякісних