Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Елементи математичної статистики

Предмет: 
Тип роботи: 
Контрольна робота
К-сть сторінок: 
69
Мова: 
Українська
Оцінка: 

величини приймають додатковий квадратичний корінь із дисперсії. Цю характеристику називають середнім квадратичним відхиленням або стандартам і позначають символом  

Стандарт має таку саму розмірність, як і випадкова величина X. Дисперсія має такі властивості: 
1. Дисперсія постійної величини дорівнює нулю D (C) = 0.
2. Дисперсія добутку постійної величини на випадкову величину дорівнює добутку квадрата постійної величини на дисперсію випадкової величини           D(CX) = C2Dx
Якщо маємо декілька таких добутків, то  
3. Дисперсія    випадкової    величини    дорівнює    математичному сподіванню її квадрата мінус квадрат її математичного сподівання  
4). Моменти випадкової величини
Узагальненням основних числових характеристик випадкових величин є моменти випадкової величини. Визначають початкові та центральні моменти.
Початковим моментом k-го порядку випадкової величини Xk називають математичне сподівання від величини X , тобто
Для дискретної випадкової величини початковий момент буде
для неперервної  
При порівняні формул видно, що початковий момент першого порядку є математичне сподівання випадкової величини, тобто   = Мх.
Центральним моментом k-го порядку випадкової величини X називають математичне сподівання від величини (X-Mx)k
Очевидно, що центральний момент першого порядку завжди буде дорівнювати нулю. 
5) Асиметрія та ексцес.
Третій центральний момент   служить характеристикою асиметрії (скошеність) розподілу. Якщо   = 0, то ми маємо симетричний розподіл випадкової величини відносно математичного сподівання.
Асиметрія — це відношення третього центрального моменту до середнього квадратичного відхилення в третьому степені
Математичне сподівання, мода, медіана, дисперсія, середнє квадратичне відхилення, моменти, асиметрія і ексцес використовують для характеристики випадкових величин при вирішенні великої кількості практичних задач, коли закон розподілу або не потрібний, або його не можна визначити. Треба пам'ятати, що кожна із числових характеристик відображає ту чи іншу властивість закону розподілу.
Центральні моменти можна виразити через початкові моменти
 
4. Нормальний закон розподілу випадкових величин
 
Нормальний закон розподілу випадкових величин має важливе значення в теорії ймовірностей і найчастіше зустрічається на практиці. Головна його властивість полягає в тому, що серед інших законів він є граничним законом, до якого наближуються інші закони розподілу в досить частих подібних типових умовах. Доведено, що більшість випадкових величин, якому б закону розподілу не підкорялися, в сумі великого числа додатних нівелюються, а сума їх підкоряється закону досить близькому до нормального закону. Це твердження відноситься і до результатів геодезичних вимірів.
Неперервна випадкова величина має нормальний розподіл, якщо щільність імовірності має рівняння
 
де е = 2,718...,   = 3,141..., Мх - математичне сподівання,   — середнє квадратичне відхилення (стандарт). Мх та   називають параметрами нормального закону розподілу. Якщо відомі значення Мх і  , то щільність імовірності повністю визначена.
Відмітимо деякі властивості кривої нормального розподілу:
1. Крива розподілу симетрична відносно ординати, яка проходить через точку Мх.
2. Крива має один максимум при х = Мх  і дорівнює  
3. При   гілки кривої асимптотично наближаються до осі Ох
4. Якщо  ,  то зміна значення математичного сподівання Мх призводить до зміщення кривої розподілу вздовж осі Ох.
5. При   і зміні величини середнього квадратичного відхилення  крива розподілу стає більш гостроверхою або плосковерхою.
При вирішенні практичних задач, нормальний розподіл відіграє важливу роль. Якщо випадкова величина X підкоряється нормальному закону розподілу, то ймовірність її попадання на ділянку ( ) дорівнює
 
Згідно з четвертою та п'ятою властивостями для різних випадкових величин X буде своя крива розподілу. Щоб уникнути цього визначають нормований нормальний закон розподілу. Вводять нормовану випадкову величину t
 
 ,
 
для якої   математичне сподівання  ,  а квадратичне відхилення  .
Інтеграл не можна виразити через елементарні функції. Тому його обчислюють через спеціальну функцію, що є визначеним інтегралом від величини   (інтеграл імовірностей.
 Іноді приводять таблицю функції 2 (t) для обчислення ймовірності попадання нормально розподіленої випадкової величини X в симетричні інтервали від -t до t. 
Функцію  (t) називають нормованою функцією Лапласа або інтегралом імовірностей. 
 
РОЗДІЛ 3. СИСТЕМИ ВИПАДКОВИХ ВЕЛИЧИН. ГРАНИЧНІ ТЕОРЕМИ ТЕОРІЇ ЙМОВІРНОСТЕЙ
 
1. Поняття та закон розподілу системи випадкових величин
 
До цього часу ми розглядали одномірну випадкову величину X. Однак в сучасній теорії математичної обробки результатів багаторазових повторних геодезичних вимірювань використовують багатомірні випадкові величини. Багатомірна випадкова величина може складатися із декількох компонентів і бути двомірною, тримірною і так далі. Так, наприклад, координати точки на площині визначаються двома випадковими величинами: абсцисою X та ординатою У; положення точки в просторі визначається вже трьома координатами - X, Y та висотою Н.
Сумісна дія двох чи більше випадкових величин приводить до системи випадкових величин. Умовимось систему декількох випадкових величин X, У, ..., N позначати (X, У, ..., N). При вивченні системи випадкових величин визначають характеристики як кожної випадкової величини, так і зв'язки та залежність між ними. А це вже більш складні задачі.
Домовимось, що систему двох випадкових величин (Х, У) ми будемо розглядати як
Фото Капча