Портал освітньо-інформаційних послуг «Студентська консультація»

  
Телефон +3 8(066) 185-39-18
Телефон +3 8(093) 202-63-01
 (093) 202-63-01
 studscon@gmail.com
 facebook.com/studcons

<script>

  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 

  ga('create', 'UA-53007750-1', 'auto');

  ga('send', 'pageview');

 

</script>

Елементи математичної статистики

Предмет: 
Тип роботи: 
Контрольна робота
К-сть сторінок: 
69
Мова: 
Українська
Оцінка: 

оцінок. Систематична похибка може визначатися на компараторі розміром X і в результаті експериментів буде отримано статистичний ряд x1, x2, …, xn 

При обробці за формулою визначають середнє арифметичне X і обчислюють різницю
 
За формулою визначають середню квадратичну похибку окремого виміру m та обчислюють середню квадратичну похибку середнього арифметичного X за формулою
 
Обчислюють статистику
 
2. Визначення граничних похибок
 
При математичній обробці результатів вимірів слід виключати із обробки грубі помилки. Методика вимірювань дозволяє своєчасно виключити "промахи" при яких окремі результати значно відрізняються від інших. Разом з тим в статистичному ряду вимірів можуть бути результати вимірів, які досить близькі між собою, але за вимогами точності або технології виконання робіт будуть грубими. Тому поняття "груба помилка" досить умовне і залежить від прийнятої надійної ймовірності.
При визначенні цільності нормованого нормального закону розподілу користувалися нормованими похибками
 
де   - похибка виміру;  m - середня квадратична похибка.
При визначених умовах вимірів завжди існує деяка гранична похибка  , яку не можуть перевищити випадкові похибки. Тоді за функцією Лапласа нормованого нормального закону розподілу можна визначити інтервал zg, залежність від рівня значності q.
 
2. Перевірка закону розподілу статистичних рядів
 
Важливе значення при математичній обробці геодезичних вимірів має знання закону розподілу результатів або похибок вимірів. Найкращі оцінки отримують, коли ряд вимірів підпорядковується нормальному закону розподілу. Однак, практично комплекс умов постійно дещо змінюється. В наслідок цього виникає відхилення закону розподілу результатів вимірів від теоретичного значення функцій розподілу.
Практично на основі тих чи інших відомостей висувають припущення або ("нульову") гіпотезу про вид закону розподілу статистичного ряду, створеного за результатами вимірів. Шляхом застосування різних критеріїв перевірки визначають, чи є допустимим розходження між дослідним і теоретичним (передбачуваним) законом розподілу.
Враховуючи, що результати геодезичних вимірів, як правило, підпорядковуються нормальному закону розподілу при дотриманні "комплексу умов" або вимог нормативно-технічної документації, розглянемо ряд критеріїв повірки відповідності нормальному закону розподілу результатів вимірів:
1. Перевірка по асиметрії і ексцесу
Гіпотезу про нормальний закон розподілу статистичного ряду називають нульовою або основною. Маємо статистичний ряд x1, x2, …, xn і висунута гіпотеза, що він підпорядковується нормальному закону розподілу (НЗР). За формулами можна визначити числові характеристики НЗР: математичне сподівання або середнє арифметичне, дисперсію, середню квадратичну похибку, асиметрію Sk та ексцес Еk.
 Скористаємося тим, що асиметрія Sk  та ексцес Еk є числовими характеристиками, що характеризують ступінь відхилення досліджуваного розподілу від теоретичного НЗР. Вони, як і інші параметри НЗР є випадковими величинами, а тому можуть відхилятися від нуля.
Мірою точності асиметрії та ексцесу є дисперсії
 
При великій кількості вимірів відповідно маємо
  
При великій кількості вимірів маємо:
 
2. Критерій Колмогорова
 
Це найбільш простий критерій перевірки гіпотези про нормальний закон розподілу. Використовується різниця D між статистичною інтегральною функцією розподілу  (z) і відповідною теоретичною функцією розподілу F(z).
При невеликій кількості вимірів   для статистичного розрахунку обчислюють: середнє арифметичне  , відхилення  , за формулою Бесселя середню квадратичну похибку m. Далі обчислюють нормовані похибки   і складають зростаючий ряд Zmin, Z1, Z2, … Zmax.
 
3. Критерій x2 (Пірсона)
 
В математичній статистиці його вважають найбільш строгим і надійним критерієм погодження нульових гіпотез. Він забезпечує мінімальну ймовірність виникнення похибок 2-го роду.
Розрахунки в критерії Пірсона аналогічні критерію Колмогорова і пов'язані з групуванням нормованих похибок. Слід пам'ятати, що при групуванні похибок в кожному інтервалі їх повинно бути не менше п'яти. Тому крайні інтервали можна штучно об'єднувати (збільшувати). Число інтервалів повинно бути не менше чотирьох.
Критерієм перевірки нульової гіпотези є статистика
 
 ,
 
де N= [vi] - число всіх вимірів, pi - теоретичне значення ймовірності вибраних інтервалів вибирається із таблиць.
В критерії Пірсона доведено, що при нормальному розподілі похибок вимірів статистика X2 має X2 - розподіл з числом ступенів вільності k = n – 1.
Критична область для нульової гіпотези буде
 
де %д - вибирається із таблиць дод. 9 за заданими д\ і   г = & — З, &- кількість інтервалів.
 
2. Розподіл імовірностей випадкових похибок
 
Результати вимірів е випадковими оскільки передбачити їх величину неможливо. Тоді і їх похибки будуть випадковими і для них можна вказати лише межу, в яких вони змінюються згідно з першою властивістю.
Неперервні випадкові похибки можна характеризувати законом розподілу, як об'єктивно існуючим зв'язком між випадковими величинами і їх імовірностями.
При багаторазових випробуваннях закон розподілу ряду істинних випадкових похибок можна характеризувати функціями:
1. Інтегральною функцією розподілу
 
  ( )
 
2. Функцією щільності
 
де   - приріст випадкової похибки  .
Звернемося до постулату Гаусса, згідно з яким найбільш імовірним значенням шуканої величини є середнє арифметичне Із результатів повторних вимірювань. Скористаємося теоремою:
Якщо випадкові похибки відповідають постулату Гаусса, то законом розподілу
Фото Капча